Zero-skipping in CapsNet. Is it worth it?

R. Sharifi, Pouya Shiri, A. Baniasadi
{"title":"Zero-skipping in CapsNet. Is it worth it?","authors":"R. Sharifi, Pouya Shiri, A. Baniasadi","doi":"10.29007/cd8h","DOIUrl":null,"url":null,"abstract":"Capsule networks (CapsNet) are the next generation of neural networks. CapsNet can be used for classification of data of different types. Today’s General Purpose Graphical Processing Units (GPGPUs) are more capable than before and let us train these complex networks. However, time and energy consumption remains a challenge. In this work, we investigate if skipping trivial operations i.e. multiplication by zero in CapsNet, can possibly save energy. We base our analysis on the number of multiplications by zero detected while training CapsNet on MNIST and FashionMNIST datasets.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/cd8h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Capsule networks (CapsNet) are the next generation of neural networks. CapsNet can be used for classification of data of different types. Today’s General Purpose Graphical Processing Units (GPGPUs) are more capable than before and let us train these complex networks. However, time and energy consumption remains a challenge. In this work, we investigate if skipping trivial operations i.e. multiplication by zero in CapsNet, can possibly save energy. We base our analysis on the number of multiplications by zero detected while training CapsNet on MNIST and FashionMNIST datasets.
CapsNet中的跳零。值得吗?
胶囊网络(CapsNet)是下一代神经网络。CapsNet可以用于对不同类型的数据进行分类。今天的通用图形处理单元(gpgpu)比以前更有能力,让我们训练这些复杂的网络。然而,时间和能量消耗仍然是一个挑战。在这项工作中,我们研究了跳过CapsNet中琐碎的操作(即乘以零)是否可能节省能源。我们的分析基于在MNIST和FashionMNIST数据集上训练CapsNet时检测到的乘零次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信