Surveillance Video Anomaly Detection with Feature Enhancement and Consistency Frame Prediction

Beiji Zou, Min Wang, Lingzi Jiang, Yue Zhang, Shu Liu
{"title":"Surveillance Video Anomaly Detection with Feature Enhancement and Consistency Frame Prediction","authors":"Beiji Zou, Min Wang, Lingzi Jiang, Yue Zhang, Shu Liu","doi":"10.1109/ICMEW56448.2022.9859414","DOIUrl":null,"url":null,"abstract":"Surveillance video anomaly detection is a challenging problem because of the diversity of abnormal events. The current prediction-based methods outperform reconstruction-based methods. But the former has the following issues: 1) Using optical flow to represent motion will affect real-time detection. 2) Distinguishing abnormal events only by local relationships will lead to ambiguity. 3) Semantic information and spatiotemporal constraint are not fully utilized. To address these problems, we propose FECP-Net: a network with feature enhancement and consistency frame prediction for surveillance video anomaly detection. We use the RGB difference between consecutive frames rather than optical flow to realize real-time detection. Meanwhile, we design a feature enhancement module to enrich semantics and global context information in features. In addition, we add spatiotemporal consistency constraint and consistency loss to strengthen consistency predictions. Extensive experiments on standard benchmarks demonstrate the effectiveness of our method.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surveillance video anomaly detection is a challenging problem because of the diversity of abnormal events. The current prediction-based methods outperform reconstruction-based methods. But the former has the following issues: 1) Using optical flow to represent motion will affect real-time detection. 2) Distinguishing abnormal events only by local relationships will lead to ambiguity. 3) Semantic information and spatiotemporal constraint are not fully utilized. To address these problems, we propose FECP-Net: a network with feature enhancement and consistency frame prediction for surveillance video anomaly detection. We use the RGB difference between consecutive frames rather than optical flow to realize real-time detection. Meanwhile, we design a feature enhancement module to enrich semantics and global context information in features. In addition, we add spatiotemporal consistency constraint and consistency loss to strengthen consistency predictions. Extensive experiments on standard benchmarks demonstrate the effectiveness of our method.
基于特征增强和一致性帧预测的监控视频异常检测
由于监控视频异常事件的多样性,异常检测是一个具有挑战性的问题。目前基于预测的方法优于基于重建的方法。但前者存在以下问题:1)用光流表示运动会影响实时检测。2)仅通过局部关系来区分异常事件会导致歧义。3)语义信息和时空约束没有得到充分利用。为了解决这些问题,我们提出了FECP-Net:一个具有特征增强和一致性帧预测的监控视频异常检测网络。我们使用连续帧之间的RGB差而不是光流来实现实时检测。同时,我们设计了一个特征增强模块来丰富特征中的语义和全局上下文信息。此外,我们还增加了时空一致性约束和一致性损失来增强一致性预测。在标准基准测试上的大量实验证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信