A Conceptual Framework for the Use of Graph Representation Within High Energy Physics Analysis

Danielle Turvill, L. Barnby, A. Anjum
{"title":"A Conceptual Framework for the Use of Graph Representation Within High Energy Physics Analysis","authors":"Danielle Turvill, L. Barnby, A. Anjum","doi":"10.1109/CCGRID.2018.00063","DOIUrl":null,"url":null,"abstract":"A new method is presented for improvement of the particle identification analysis process in a way which combines both the measured features, from detectors, and physics parameters. It is proposed that a graph representation can effectively express data in a format allowing for simpler interpretation and exploitation of all data available for analysis purposes. Nodes will represent entities and edges will represent the relation between them. Not only are graphs able to provide this useful structure and formal representation of knowledge but they can also be managed efficiently. Overall, this graphical representation will allow for the study of relationships between tracks, enable better pattern recognition and, as a result, improve the classification of particles.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A new method is presented for improvement of the particle identification analysis process in a way which combines both the measured features, from detectors, and physics parameters. It is proposed that a graph representation can effectively express data in a format allowing for simpler interpretation and exploitation of all data available for analysis purposes. Nodes will represent entities and edges will represent the relation between them. Not only are graphs able to provide this useful structure and formal representation of knowledge but they can also be managed efficiently. Overall, this graphical representation will allow for the study of relationships between tracks, enable better pattern recognition and, as a result, improve the classification of particles.
在高能物理分析中使用图表示的概念框架
提出了一种结合探测器测量特征和物理参数的粒子识别分析方法。提出图形表示可以有效地以一种格式表示数据,允许更简单的解释和利用所有可用于分析目的的数据。节点表示实体,边表示实体之间的关系。图不仅能够提供这种有用的结构和知识的正式表示,而且还可以有效地管理它们。总的来说,这种图形表示将允许研究轨迹之间的关系,实现更好的模式识别,从而改进粒子的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信