Adaptive Model Tree for Streaming Data

A. M. Zimmer, Michael Kurze, T. Seidl
{"title":"Adaptive Model Tree for Streaming Data","authors":"A. M. Zimmer, Michael Kurze, T. Seidl","doi":"10.1109/ICDM.2013.46","DOIUrl":null,"url":null,"abstract":"With an ever-growing availability of data streams the interest in and need for efficient techniques dealing with such data increases. A major challenge in this context is the accurate online prediction of continuous values in the presence of concept drift. In this paper, we introduce a new adaptive model tree (AMT), designed to incrementally learn from the data stream, adapt to the changes, and to perform real time accurate predictions at anytime. To deal with sub models lying in different subspaces, we propose a new model clustering algorithm able to identify subspace models, and use it for computing splits in the input space. Compared to state of the art, our AMT allows for oblique splits, delivering more compact and accurate models.","PeriodicalId":308676,"journal":{"name":"2013 IEEE 13th International Conference on Data Mining","volume":"104 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2013.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With an ever-growing availability of data streams the interest in and need for efficient techniques dealing with such data increases. A major challenge in this context is the accurate online prediction of continuous values in the presence of concept drift. In this paper, we introduce a new adaptive model tree (AMT), designed to incrementally learn from the data stream, adapt to the changes, and to perform real time accurate predictions at anytime. To deal with sub models lying in different subspaces, we propose a new model clustering algorithm able to identify subspace models, and use it for computing splits in the input space. Compared to state of the art, our AMT allows for oblique splits, delivering more compact and accurate models.
流数据的自适应模型树
随着数据流可用性的不断增长,人们对处理此类数据的有效技术的兴趣和需求也在增加。在这种情况下,一个主要的挑战是在存在概念漂移的情况下对连续值进行准确的在线预测。本文引入了一种新的自适应模型树(AMT),旨在从数据流中增量学习,适应变化,并在任何时候进行实时准确的预测。为了处理不同子空间中的子模型,我们提出了一种能够识别子空间模型的模型聚类算法,并将其用于计算输入空间中的分割。与艺术的状态相比,我们的AMT允许斜分裂,提供更紧凑和准确的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信