{"title":"Automatic Material Classification of Targets from GPR Data using Artificial Neural Networks","authors":"Nairit Barkataki, Ankur Jyoti Kalita, Utpal Sarma","doi":"10.1109/SILCON55242.2022.10028944","DOIUrl":null,"url":null,"abstract":"Ground penetrating radar (GPR) is a preferred non-destructive method to study and identify buried objects in the field of geology, civil engineering, archaeology, military, etc. Landmines are now largely composed of plastic and other non-metallic materials, while archaeologists must deal with buried artefacts such as ceramics, pillars, and walls built of a range of materials. As a result, understanding the material properties of buried artefacts is critical. This study presents an ANN model for automatic classification of buried objects from GPR A-Scan data. The proposed ANN model is trained and validated using a synthetic dataset generated using gprMax. The model performs well in classifying three different object classes of aluminium, iron and limestone, while achieving an overall accuracy of 95%.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ground penetrating radar (GPR) is a preferred non-destructive method to study and identify buried objects in the field of geology, civil engineering, archaeology, military, etc. Landmines are now largely composed of plastic and other non-metallic materials, while archaeologists must deal with buried artefacts such as ceramics, pillars, and walls built of a range of materials. As a result, understanding the material properties of buried artefacts is critical. This study presents an ANN model for automatic classification of buried objects from GPR A-Scan data. The proposed ANN model is trained and validated using a synthetic dataset generated using gprMax. The model performs well in classifying three different object classes of aluminium, iron and limestone, while achieving an overall accuracy of 95%.