Signature Based Radar Target Classification

R. Parvatha, T. Ramya, G. S. Aparanji, M. V. Mamtha, Anjali Gupta, Rijo Jackson Tom
{"title":"Signature Based Radar Target Classification","authors":"R. Parvatha, T. Ramya, G. S. Aparanji, M. V. Mamtha, Anjali Gupta, Rijo Jackson Tom","doi":"10.1109/RTEICT52294.2021.9573912","DOIUrl":null,"url":null,"abstract":"This study attempts to categorize ten aerial targets, including fighter jets, missiles, military helicopters, and unmanned aerial vehicles (UAVs). A large dataset comprising of simulations of aerial targets at various aspect angles is taken rather than real-time data in order to attain higher accuracy and better classification. This study proposes a highly accurate multi-model radar target classification system that performs a comparative analysis of machine learning and deep learning algorithms such as Random Forests, Support Vector Classifier (SVC), k-Nearest Neighbors (KNN), Convolutional Neural Networks (CNN), Long Short Term Recurrent Neural Networks (LSTM RNN).","PeriodicalId":191410,"journal":{"name":"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT52294.2021.9573912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study attempts to categorize ten aerial targets, including fighter jets, missiles, military helicopters, and unmanned aerial vehicles (UAVs). A large dataset comprising of simulations of aerial targets at various aspect angles is taken rather than real-time data in order to attain higher accuracy and better classification. This study proposes a highly accurate multi-model radar target classification system that performs a comparative analysis of machine learning and deep learning algorithms such as Random Forests, Support Vector Classifier (SVC), k-Nearest Neighbors (KNN), Convolutional Neural Networks (CNN), Long Short Term Recurrent Neural Networks (LSTM RNN).
基于特征的雷达目标分类
本研究试图对十种空中目标进行分类,包括战斗机、导弹、军用直升机和无人驾驶飞行器(uav)。为了获得更高的精度和更好的分类,采用了一个由不同角度空中目标模拟组成的大型数据集,而不是实时数据。本研究提出了一种高精度的多模型雷达目标分类系统,该系统对机器学习和深度学习算法(如随机森林、支持向量分类器(SVC)、k-近邻(KNN)、卷积神经网络(CNN)、长短期循环神经网络(LSTM RNN))进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信