Intelligent agents in decentralized traffic control

Enrique Ferreira, Eswaran Subrahmanian, D. Manstetten
{"title":"Intelligent agents in decentralized traffic control","authors":"Enrique Ferreira, Eswaran Subrahmanian, D. Manstetten","doi":"10.1109/ITSC.2001.948746","DOIUrl":null,"url":null,"abstract":"A multi-agent decentralized strategy to control an urban traffic network is presented. Each agent is in charge of managing the signals of an intersection. Local feedback information about an intersection state is obtained using lane sensors to implement an adaptive strategy for each agent. Cooperating behavior between agents is achieved by exchanging information, called \"opinions\", between adjacent agents to influence each other decisions. Results for this architecture are shown on a simulated environment modeling an area of the city of Pittsburgh, PA, and comparisons are made with other methods.","PeriodicalId":173372,"journal":{"name":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2001.948746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

A multi-agent decentralized strategy to control an urban traffic network is presented. Each agent is in charge of managing the signals of an intersection. Local feedback information about an intersection state is obtained using lane sensors to implement an adaptive strategy for each agent. Cooperating behavior between agents is achieved by exchanging information, called "opinions", between adjacent agents to influence each other decisions. Results for this architecture are shown on a simulated environment modeling an area of the city of Pittsburgh, PA, and comparisons are made with other methods.
分散交通控制中的智能代理
提出了一种多智能体分散控制城市交通网络的策略。每个agent负责管理交叉路口的信号。利用车道传感器获取交叉口状态的局部反馈信息,实现每个agent的自适应策略。agent之间的合作行为是通过相邻agent之间交换信息(称为“意见”)来影响彼此的决策来实现的。在宾夕法尼亚州匹兹堡市的一个模拟环境中显示了该体系结构的结果,并与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信