Post processing for dense stereo matching by iterative local plane fitting

Hongbo Lu, Haibo Meng, Kun Du, Yuan Sun, Yuanchao Xu, Zhimin Zhang
{"title":"Post processing for dense stereo matching by iterative local plane fitting","authors":"Hongbo Lu, Haibo Meng, Kun Du, Yuan Sun, Yuanchao Xu, Zhimin Zhang","doi":"10.1109/SNPD.2014.6888698","DOIUrl":null,"url":null,"abstract":"Disparity refinement is an essential step of local stereo matching methods to produce fine dense disparity maps. The inherent defect of local stereo methods results in erroneous disparity in occluded areas. In this paper, we present a novel post processing method which can effectively improve the accuracy of dense disparity maps by rectifying disparity errors iteratively. Invalid disparities are first detected by left-right consistency check and color-disparity consistency check. For each invalid pixel, supports from valid pixels in the neighborhood are collected to determine the plane parameters of the local window. An iterative strategy is adopted to gradually propagate disparity information from valid pixels to invalid areas. We apply the proposed method to disparity maps produced by two recent stereo matching methods, and compare the refining results with other post processing methods. Experimental results show the effectiveness of our method in improving dense disparity maps.","PeriodicalId":272932,"journal":{"name":"15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2014.6888698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Disparity refinement is an essential step of local stereo matching methods to produce fine dense disparity maps. The inherent defect of local stereo methods results in erroneous disparity in occluded areas. In this paper, we present a novel post processing method which can effectively improve the accuracy of dense disparity maps by rectifying disparity errors iteratively. Invalid disparities are first detected by left-right consistency check and color-disparity consistency check. For each invalid pixel, supports from valid pixels in the neighborhood are collected to determine the plane parameters of the local window. An iterative strategy is adopted to gradually propagate disparity information from valid pixels to invalid areas. We apply the proposed method to disparity maps produced by two recent stereo matching methods, and compare the refining results with other post processing methods. Experimental results show the effectiveness of our method in improving dense disparity maps.
基于迭代局部平面拟合的密集立体匹配后处理
视差细化是局部立体匹配方法中生成精细密集视差图的重要步骤。局部立体方法的固有缺陷导致在遮挡区域出现错误的视差。本文提出了一种新的后处理方法,通过迭代校正视差误差,有效地提高了密集视差图的精度。首先通过左右一致性检查和色差一致性检查检测无效差异。对于每个无效像素,收集邻域内有效像素的支持度,确定局部窗口的平面参数。采用迭代策略将视差信息从有效像素逐步传播到无效区域。将该方法应用于两种最新立体匹配方法生成的视差图,并与其他后处理方法进行了比较。实验结果表明了该方法在改进密集视差图方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信