Scalable and High Performance Betweenness Centrality on the GPU

Adam McLaughlin, David A. Bader
{"title":"Scalable and High Performance Betweenness Centrality on the GPU","authors":"Adam McLaughlin, David A. Bader","doi":"10.1109/SC.2014.52","DOIUrl":null,"url":null,"abstract":"Graphs that model social networks, numerical simulations, and the structure of the Internet are enormous and cannot be manually inspected. A popular metric used to analyze these networks is between ness centrality, which has applications in community detection, power grid contingency analysis, and the study of the human brain. However, these analyses come with a high computational cost that prevents the examination of large graphs of interest. Prior GPU implementations suffer from large local data structures and inefficient graph traversals that limit scalability and performance. Here we present several hybrid GPU implementations, providing good performance on graphs of arbitrary structure rather than just scale-free graphs as was done previously. We achieve up to 13x speedup on high-diameter graphs and an average of 2.71x speedup overall over the best existing GPU algorithm. We observe near linear speedup and performance exceeding tens of GTEPS when running between ness centrality on 192 GPUs.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

Graphs that model social networks, numerical simulations, and the structure of the Internet are enormous and cannot be manually inspected. A popular metric used to analyze these networks is between ness centrality, which has applications in community detection, power grid contingency analysis, and the study of the human brain. However, these analyses come with a high computational cost that prevents the examination of large graphs of interest. Prior GPU implementations suffer from large local data structures and inefficient graph traversals that limit scalability and performance. Here we present several hybrid GPU implementations, providing good performance on graphs of arbitrary structure rather than just scale-free graphs as was done previously. We achieve up to 13x speedup on high-diameter graphs and an average of 2.71x speedup overall over the best existing GPU algorithm. We observe near linear speedup and performance exceeding tens of GTEPS when running between ness centrality on 192 GPUs.
GPU上的可扩展和高性能中间性
模拟社会网络、数值模拟和互联网结构的图表非常庞大,无法手工检查。用于分析这些网络的一个流行度量是中间度,它在社区检测、电网应急分析和人脑研究中都有应用。然而,这些分析带来了很高的计算成本,阻碍了对感兴趣的大型图的检查。以前的GPU实现受到大型本地数据结构和低效的图形遍历的影响,限制了可伸缩性和性能。在这里,我们提出了几种混合GPU实现,在任意结构的图形上提供良好的性能,而不是像以前那样只提供无标度的图形。我们在高直径图形上实现了高达13倍的加速,在现有最佳GPU算法的基础上平均实现了2.71倍的加速。我们观察到在192个gpu上运行时,在ness中心性之间的加速和性能超过数十个GTEPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信