{"title":"GOMES: A group-aware multi-view fusion approach towards real-world image clustering","authors":"Zhe Xue, Guorong Li, Shuhui Wang, Chunjie Zhang, W. Zhang, Qingming Huang","doi":"10.1109/ICME.2015.7177392","DOIUrl":null,"url":null,"abstract":"Different features describe different views of visual appearance, multi-view based methods can integrate the information contained in each view and improve the image clustering performance. Most of the existing methods assume that the importance of one type of feature is the same to all the data. However, the visual appearance of images are different, so the description abilities of different features vary with different images. To solve this problem, we propose a group-aware multi-view fusion approach. Images are partitioned into groups which consist of several images sharing similar visual appearance. We assign different weights to evaluate the pairwise similarity between different groups. Then the clustering results and the fusion weights are learned by an iterative optimization procedure. Experimental results indicate that our approach achieves promising clustering performance compared with the existing methods.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Different features describe different views of visual appearance, multi-view based methods can integrate the information contained in each view and improve the image clustering performance. Most of the existing methods assume that the importance of one type of feature is the same to all the data. However, the visual appearance of images are different, so the description abilities of different features vary with different images. To solve this problem, we propose a group-aware multi-view fusion approach. Images are partitioned into groups which consist of several images sharing similar visual appearance. We assign different weights to evaluate the pairwise similarity between different groups. Then the clustering results and the fusion weights are learned by an iterative optimization procedure. Experimental results indicate that our approach achieves promising clustering performance compared with the existing methods.