Transfer Learning from Audio Deep Learning Models for Micro-Doppler Activity Recognition

K. T. Tran, Lewis D. Griffin, K. Chetty, S. Vishwakarma
{"title":"Transfer Learning from Audio Deep Learning Models for Micro-Doppler Activity Recognition","authors":"K. T. Tran, Lewis D. Griffin, K. Chetty, S. Vishwakarma","doi":"10.1109/RADAR42522.2020.9114643","DOIUrl":null,"url":null,"abstract":"This paper presents a mechanism to transform radio frequency micro-Doppler signatures into a pseudo-audio representation, which results in significant improvements in transfer learning from a deep learning model trained on audio. We also demonstrate that transfer learning from a deep learning model trained on audio is more effective than transfer learning from a model trained on images, which suggests machine learning methods used to analyse audio can be leveraged for micro-Doppler. Finally, we utilise an occlusion method to gain an insight into how the deep learning model interprets the micro-Doppler signatures and the subsequent pseudo-audio representations.","PeriodicalId":125006,"journal":{"name":"2020 IEEE International Radar Conference (RADAR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Radar Conference (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR42522.2020.9114643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a mechanism to transform radio frequency micro-Doppler signatures into a pseudo-audio representation, which results in significant improvements in transfer learning from a deep learning model trained on audio. We also demonstrate that transfer learning from a deep learning model trained on audio is more effective than transfer learning from a model trained on images, which suggests machine learning methods used to analyse audio can be leveraged for micro-Doppler. Finally, we utilise an occlusion method to gain an insight into how the deep learning model interprets the micro-Doppler signatures and the subsequent pseudo-audio representations.
基于音频深度学习模型的微多普勒活动识别迁移学习
本文提出了一种将射频微多普勒特征转换为伪音频表示的机制,该机制显著改善了基于音频训练的深度学习模型的迁移学习。我们还证明,从音频训练的深度学习模型中进行迁移学习比从图像训练的模型中进行迁移学习更有效,这表明用于分析音频的机器学习方法可以用于微多普勒。最后,我们利用遮挡方法来深入了解深度学习模型如何解释微多普勒特征和随后的伪音频表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信