Efficient multi-cell SOC estimation for electrified vehicle battery packs

Weizhong Wang, P. Malysz, Deqiang Wang, Ran Gu, Hong Yang, A. Emadi
{"title":"Efficient multi-cell SOC estimation for electrified vehicle battery packs","authors":"Weizhong Wang, P. Malysz, Deqiang Wang, Ran Gu, Hong Yang, A. Emadi","doi":"10.1109/ITEC.2016.7520206","DOIUrl":null,"url":null,"abstract":"Reporting pack-level state-of-charge (SOC) requires identification of the maximum and minimum SOC cells in the pack. Applying separate estimators for every cell greatly increases the computational burden of battery state estimation. Efficient approaches based on either an average cell estimator and m-top bottom estimators are benchmarked on their ability to report maximum minimum SOC. A simulation case study on a 14-cell battery with cell balancing and typical aged-pack cell-to-cell variations is performed. The average estimator approach with voltage-based correction is shown to induce unacceptably large errors. The m-top/bottom method with voltage based selection criteria is shown to be a viable computational efficient approach in estimating maximum minimum SOC cells.","PeriodicalId":280676,"journal":{"name":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC.2016.7520206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Reporting pack-level state-of-charge (SOC) requires identification of the maximum and minimum SOC cells in the pack. Applying separate estimators for every cell greatly increases the computational burden of battery state estimation. Efficient approaches based on either an average cell estimator and m-top bottom estimators are benchmarked on their ability to report maximum minimum SOC. A simulation case study on a 14-cell battery with cell balancing and typical aged-pack cell-to-cell variations is performed. The average estimator approach with voltage-based correction is shown to induce unacceptably large errors. The m-top/bottom method with voltage based selection criteria is shown to be a viable computational efficient approach in estimating maximum minimum SOC cells.
电动汽车电池组的高效多电池荷电状态估计
报告包级充电状态(SOC)需要识别包中的最大和最小SOC电池。对每个电池使用单独的估计器,大大增加了电池状态估计的计算量。基于平均单元估计器和m-top - bottom估计器的有效方法根据其报告最大最小SOC的能力进行基准测试。对具有电池平衡和典型老化电池组之间变化的14节电池进行了仿真案例研究。采用基于电压的校正的平均估计方法会产生不可接受的大误差。基于电压选择准则的m-top/bottom方法是估计最大最小SOC电池的一种可行的计算效率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信