Reliability of Smart-Wearables using PSO-GA Optimized Algorithm in Terms of Data Analysis

J. Sivakumar, Abdul Quadir Md, Vigneswaran T, P. K, A. K. Sivaraman
{"title":"Reliability of Smart-Wearables using PSO-GA Optimized Algorithm in Terms of Data Analysis","authors":"J. Sivakumar, Abdul Quadir Md, Vigneswaran T, P. K, A. K. Sivaraman","doi":"10.1109/ICICICT54557.2022.9917888","DOIUrl":null,"url":null,"abstract":"Rapid advancement in the smart-wearable industry has increased the importance of modeling the relationship between the raw data captured by the devices and the useful information obtained by analyzing using a metaheuristic approach. In this paper, a new model to cater to the user-end experience based on the PSO-GA optimized ANFIS approach is proposed. PSO-GA consists of alternating phases of Genetic Algorithm and Particle Swarm Optimization. The proposed model aims at minimizing the function, under dynamic changes while in constant interaction of the fitness-tracker with the human body.","PeriodicalId":246214,"journal":{"name":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICICT54557.2022.9917888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rapid advancement in the smart-wearable industry has increased the importance of modeling the relationship between the raw data captured by the devices and the useful information obtained by analyzing using a metaheuristic approach. In this paper, a new model to cater to the user-end experience based on the PSO-GA optimized ANFIS approach is proposed. PSO-GA consists of alternating phases of Genetic Algorithm and Particle Swarm Optimization. The proposed model aims at minimizing the function, under dynamic changes while in constant interaction of the fitness-tracker with the human body.
基于PSO-GA优化算法的智能可穿戴设备可靠性分析
智能可穿戴行业的快速发展增加了对设备捕获的原始数据与使用元启发式方法分析获得的有用信息之间的关系进行建模的重要性。本文提出了一种基于PSO-GA优化ANFIS方法的满足用户端体验的新模型。PSO-GA由遗传算法和粒子群算法交替进行组成。该模型的目标是在健身追踪器与人体不断交互的情况下,在动态变化下使功能最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信