Compressed Sensing Based Traffic Prediction For 5G HetNet IoT Video Streaming

Shuangli Wu, Wei Mao, Tao Hong, Cong Liu, M. Kadoch
{"title":"Compressed Sensing Based Traffic Prediction For 5G HetNet IoT Video Streaming","authors":"Shuangli Wu, Wei Mao, Tao Hong, Cong Liu, M. Kadoch","doi":"10.1109/IWCMC.2019.8766662","DOIUrl":null,"url":null,"abstract":"Nowadays, IoT video applications are in a sharp rise, various real-time video streaming of video surveillance systems transmitted via Internet are widely investigated. The real-time video surveillance can actively monitor and detect the abnormal events in time. In 5G HetNets, we specifically develop a compressed sensing based linear predictor to predict the traffic load at the next moment. The results justify that our proposed method can forecast the traffic load and improve system performance.","PeriodicalId":363800,"journal":{"name":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCMC.2019.8766662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Nowadays, IoT video applications are in a sharp rise, various real-time video streaming of video surveillance systems transmitted via Internet are widely investigated. The real-time video surveillance can actively monitor and detect the abnormal events in time. In 5G HetNets, we specifically develop a compressed sensing based linear predictor to predict the traffic load at the next moment. The results justify that our proposed method can forecast the traffic load and improve system performance.
基于压缩感知的5G物联网视频流流量预测
如今,物联网视频应用急剧兴起,通过互联网传输的视频监控系统的各种实时视频流被广泛研究。实时视频监控能够主动监控并及时发现异常事件。在5G HetNets中,我们专门开发了一种基于压缩感知的线性预测器来预测下一刻的流量负载。结果表明,该方法可以有效地预测流量负荷,提高系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信