{"title":"Sparse domination on non-homogeneous spaces with an application to $A_p$ weights","authors":"E. Gallardo-Gutiérrez, J. Partington","doi":"10.4171/RMI/1030","DOIUrl":null,"url":null,"abstract":"In the context of a theorem of Richter, we establish a similarity between C0-semigroups of analytic 2-isometries {T(t)}t≥0 acting on a Hilbert space H and the multiplication operator semigroup {Mϕt}t≥0 induced by ϕt(s)=exp(−st) for s in the right-half plane C+ acting boundedly on weighted Dirichlet spaces on C+. As a consequence, we derive a connection with the right shift semigroup {St}t≥0 given by \nStf(x)={0f(x−t) if 0≤x≤t, if x>t, \nacting on a weighted Lebesgue space on the half line R+ and address some applications regarding the study of the invariant subspaces\\linebreak of C0-semigroups of analytic 2-isometries.","PeriodicalId":239929,"journal":{"name":"Revista Matemática Iberoamericana","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Iberoamericana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RMI/1030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the context of a theorem of Richter, we establish a similarity between C0-semigroups of analytic 2-isometries {T(t)}t≥0 acting on a Hilbert space H and the multiplication operator semigroup {Mϕt}t≥0 induced by ϕt(s)=exp(−st) for s in the right-half plane C+ acting boundedly on weighted Dirichlet spaces on C+. As a consequence, we derive a connection with the right shift semigroup {St}t≥0 given by
Stf(x)={0f(x−t) if 0≤x≤t, if x>t,
acting on a weighted Lebesgue space on the half line R+ and address some applications regarding the study of the invariant subspaces\linebreak of C0-semigroups of analytic 2-isometries.