Sparse domination on non-homogeneous spaces with an application to $A_p$ weights

E. Gallardo-Gutiérrez, J. Partington
{"title":"Sparse domination on non-homogeneous spaces with an application to $A_p$ weights","authors":"E. Gallardo-Gutiérrez, J. Partington","doi":"10.4171/RMI/1030","DOIUrl":null,"url":null,"abstract":"In the context of a theorem of Richter, we establish a similarity between C0-semigroups of analytic 2-isometries {T(t)}t≥0 acting on a Hilbert space H and the multiplication operator semigroup {Mϕt}t≥0 induced by ϕt(s)=exp(−st) for s in the right-half plane C+ acting boundedly on weighted Dirichlet spaces on C+. As a consequence, we derive a connection with the right shift semigroup {St}t≥0 given by \nStf(x)={0f(x−t) if 0≤x≤t, if x>t, \nacting on a weighted Lebesgue space on the half line R+ and address some applications regarding the study of the invariant subspaces\\linebreak of C0-semigroups of analytic 2-isometries.","PeriodicalId":239929,"journal":{"name":"Revista Matemática Iberoamericana","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Iberoamericana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/RMI/1030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the context of a theorem of Richter, we establish a similarity between C0-semigroups of analytic 2-isometries {T(t)}t≥0 acting on a Hilbert space H and the multiplication operator semigroup {Mϕt}t≥0 induced by ϕt(s)=exp(−st) for s in the right-half plane C+ acting boundedly on weighted Dirichlet spaces on C+. As a consequence, we derive a connection with the right shift semigroup {St}t≥0 given by Stf(x)={0f(x−t) if 0≤x≤t, if x>t, acting on a weighted Lebesgue space on the half line R+ and address some applications regarding the study of the invariant subspaces\linebreak of C0-semigroups of analytic 2-isometries.
非齐次空间上的稀疏支配及其对$A_p$权重的应用
在Richter定理的背景下,我们建立了作用于Hilbert空间H上的解析2-等距的c0 -半群{T(T)} T≥0与作用于C+上的加权Dirichlet空间上的右半平面C+上的乘算子{m T} T≥0的相似性。因此,我们得到了作用于半直线R+上的加权Lebesgue空间上的Stf(x)={0f(x−t),当0≤x≤t,当x>t时作用于半直线R+上的右移半群{St}t≥0的联系,并讨论了解析2等距的c0 -半群的不变子空间\断行的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信