A YOLO-Based Method for Oblique Car License Plate Detection and Recognition

Wei-Chen Li, Ting-Hsuan Hsu, Ke-Nung Huang, Chou-Chen Wang
{"title":"A YOLO-Based Method for Oblique Car License Plate Detection and Recognition","authors":"Wei-Chen Li, Ting-Hsuan Hsu, Ke-Nung Huang, Chou-Chen Wang","doi":"10.1109/SNPD51163.2021.9704935","DOIUrl":null,"url":null,"abstract":"In recent years, automatic license plate recognition (ALPR) system is applied in some traffic-related applications based on deep learning. However, the new ALPR is very difficult to obtain high detection and recognition rates for oblique car license plate (LP). Recently, Silva et al. [5] proposed a warped planar object detection (WPOD) based on deep convolutional neural network (CNN) to overcome the oblique views of LP. Although the WPOD network can achieve the location and rectification of LPs, the loss function of WPOD renders the confidence parameter due to high computational complexity. This also leads to WPOD network cannot locate the optimal LP bounding box. In order to further improve the accuracy of ALPR system, we develop a simple intersection over union (IOU) algorithm to speed up the calculating process of confidence. In this paper, the four-vertex coordinates of the label bounding box and prediction bounding box of oblique LP are used to generate two rectangular boxes, and then a simple IOU algorithm is used to fast calculate the approximate value of IOU. Simulation results show that the proposed ALPR system can arrive a high accuracy of LP recognition about 95.7% on an average. In addition, the proposed system also can achieve higher recognition rate about 1% when compared to the Silva’s ALPR system.","PeriodicalId":235370,"journal":{"name":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACIS 22nd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD51163.2021.9704935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, automatic license plate recognition (ALPR) system is applied in some traffic-related applications based on deep learning. However, the new ALPR is very difficult to obtain high detection and recognition rates for oblique car license plate (LP). Recently, Silva et al. [5] proposed a warped planar object detection (WPOD) based on deep convolutional neural network (CNN) to overcome the oblique views of LP. Although the WPOD network can achieve the location and rectification of LPs, the loss function of WPOD renders the confidence parameter due to high computational complexity. This also leads to WPOD network cannot locate the optimal LP bounding box. In order to further improve the accuracy of ALPR system, we develop a simple intersection over union (IOU) algorithm to speed up the calculating process of confidence. In this paper, the four-vertex coordinates of the label bounding box and prediction bounding box of oblique LP are used to generate two rectangular boxes, and then a simple IOU algorithm is used to fast calculate the approximate value of IOU. Simulation results show that the proposed ALPR system can arrive a high accuracy of LP recognition about 95.7% on an average. In addition, the proposed system also can achieve higher recognition rate about 1% when compared to the Silva’s ALPR system.
一种基于yolo的斜车牌检测与识别方法
近年来,基于深度学习的车牌自动识别(ALPR)系统被应用于一些与交通相关的应用中。然而,对于斜车牌,新的ALPR很难获得较高的检测和识别率。最近,Silva等人提出了一种基于深度卷积神经网络(CNN)的翘曲平面物体检测(WPOD),以克服LP的倾斜视图。虽然WPOD网络可以实现lp的定位和纠偏,但由于计算复杂度高,WPOD的损失函数呈现置信度参数。这也导致WPOD网络无法找到最优LP边界盒。为了进一步提高ALPR系统的精度,我们开发了一种简单的IOU算法来加快置信度的计算过程。本文利用斜LP的标签边界框和预测边界框的四顶点坐标生成两个矩形框,然后利用简单的IOU算法快速计算出IOU的近似值。仿真结果表明,该算法能达到95.7%的LP识别精度。此外,与Silva的ALPR系统相比,该系统还可以实现更高的识别率,约为1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信