Analisis Performa ResNet-152 dan AlexNet dalam Klasifikasi Jenis Kanker Kulit

Tommy Saputra, Muhammad Ezar Al-Rivan
{"title":"Analisis Performa ResNet-152 dan AlexNet dalam Klasifikasi Jenis Kanker Kulit","authors":"Tommy Saputra, Muhammad Ezar Al-Rivan","doi":"10.30998/string.v8i1.16464","DOIUrl":null,"url":null,"abstract":"<p><em>Skin cancer is a dangerous disease. The most common skin cancers in Indonesia is melanoma. Melanoma cases reached 9,6 million in 2018. Skin cancer can be cured with proper and quick treatment. Skin cancer early detection can be done by detection system types of skin cancer based on benign and malignant classes using Convolutional Neural Network (CNN) with</em><em> </em><em>ResNet-152 and AlexNet architecture. The data </em><em>are</em><em> taken from the 2019 International Skin Imaging Collaboration (ISIC) archives. The optimizer algorithms </em><em>used</em><em> </em><em>are</em><em> Adaptive Moment Estimation (Adam) and Mini-Batch Gradient Descent (MBGD). </em><em>The result of the research indicates that </em><em>ResNet-152 architecture using MBGD optimizer give</em><em>s</em><em> the best result with an accuracy of 87.85%</em></p>","PeriodicalId":177991,"journal":{"name":"STRING (Satuan Tulisan Riset dan Inovasi Teknologi)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STRING (Satuan Tulisan Riset dan Inovasi Teknologi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30998/string.v8i1.16464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer is a dangerous disease. The most common skin cancers in Indonesia is melanoma. Melanoma cases reached 9,6 million in 2018. Skin cancer can be cured with proper and quick treatment. Skin cancer early detection can be done by detection system types of skin cancer based on benign and malignant classes using Convolutional Neural Network (CNN) with ResNet-152 and AlexNet architecture. The data are taken from the 2019 International Skin Imaging Collaboration (ISIC) archives. The optimizer algorithms used are Adaptive Moment Estimation (Adam) and Mini-Batch Gradient Descent (MBGD). The result of the research indicates that ResNet-152 architecture using MBGD optimizer gives the best result with an accuracy of 87.85%

皮肤癌分类项目中ResNet-152和AlexNet的表现分析
皮肤癌是一种危险的疾病。印度尼西亚最常见的皮肤癌是黑色素瘤。2018年,黑色素瘤病例达到960万例。通过适当和快速的治疗,皮肤癌可以治愈。皮肤癌的早期检测可以通过使用具有ResNet-152和AlexNet架构的卷积神经网络(CNN)基于良性和恶性分类的皮肤癌检测系统类型来完成。数据取自2019年国际皮肤成像合作(ISIC)档案。使用的优化算法是自适应矩估计(Adam)和小批量梯度下降(MBGD)。研究结果表明,使用MBGD优化器的ResNet-152体系结构得到了最好的结果,准确率为87.85%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信