Vectorization of multibyte floating point data formats

Andrew Anderson, David Gregg
{"title":"Vectorization of multibyte floating point data formats","authors":"Andrew Anderson, David Gregg","doi":"10.1145/2967938.2967966","DOIUrl":null,"url":null,"abstract":"We propose a scheme for reduced-precision representation of floating point data on a continuum between IEEE-754 floating point types. Our scheme enables the use of lower precision formats for a reduction in storage space requirements and data transfer volume. We describe how our scheme can be accelerated using existing hardware vector units on a general-purpose processor (GPP). Exploiting native vector hardware allows us to support reduced precision floating point with low overhead. We demonstrate that supporting reduced precision in the compiler as opposed to using a library approach can yield a low overhead solution for GPPs.","PeriodicalId":407717,"journal":{"name":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2967938.2967966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a scheme for reduced-precision representation of floating point data on a continuum between IEEE-754 floating point types. Our scheme enables the use of lower precision formats for a reduction in storage space requirements and data transfer volume. We describe how our scheme can be accelerated using existing hardware vector units on a general-purpose processor (GPP). Exploiting native vector hardware allows us to support reduced precision floating point with low overhead. We demonstrate that supporting reduced precision in the compiler as opposed to using a library approach can yield a low overhead solution for GPPs.
多字节浮点数据格式的矢量化
我们提出了在IEEE-754浮点类型之间连续体上浮点数据的降低精度表示的方案。我们的方案允许使用精度较低的格式,以减少存储空间需求和数据传输量。我们描述了如何使用通用处理器(GPP)上现有的硬件矢量单元来加速我们的方案。利用原生的矢量硬件使我们能够以低开销支持低精度的浮点数。我们证明,与使用库方法相比,在编译器中支持降低精度可以为gpp提供低开销的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信