Policy iteration-based integral reinforcement learning for online adaptive trajectory tracking of mobile robot

Tatsuki Ashida, H. Ichihara
{"title":"Policy iteration-based integral reinforcement learning for online adaptive trajectory tracking of mobile robot","authors":"Tatsuki Ashida, H. Ichihara","doi":"10.1080/18824889.2021.1972266","DOIUrl":null,"url":null,"abstract":"This paper considers trajectory tracking control for a nonholonomic mobile robot using integral reinforcement learning (IRL) based on a value functional represented by integrating a local cost. The tracking error dynamics between the robot and reference trajectories takes the form of time-invariant input-affine continuous-time nonlinear systems if the reference trajectory counterpart of the translational and angular velocities are constant. This paper applies integral reinforcement learning to the tracking error dynamics by approximating the value functional from the data collected along the robot trajectory. The paper proposes a specific procedure to implement the IRL-based policy iteration online, including a batch least-squares minimization. The approximate value function updates the control policy to compensate for the translational and angular velocities that drive the robot. Numerical examples illustrate to demonstrate the tracking performance of integral reinforcement learning.","PeriodicalId":413922,"journal":{"name":"SICE journal of control, measurement, and system integration","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE journal of control, measurement, and system integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18824889.2021.1972266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers trajectory tracking control for a nonholonomic mobile robot using integral reinforcement learning (IRL) based on a value functional represented by integrating a local cost. The tracking error dynamics between the robot and reference trajectories takes the form of time-invariant input-affine continuous-time nonlinear systems if the reference trajectory counterpart of the translational and angular velocities are constant. This paper applies integral reinforcement learning to the tracking error dynamics by approximating the value functional from the data collected along the robot trajectory. The paper proposes a specific procedure to implement the IRL-based policy iteration online, including a batch least-squares minimization. The approximate value function updates the control policy to compensate for the translational and angular velocities that drive the robot. Numerical examples illustrate to demonstrate the tracking performance of integral reinforcement learning.
基于策略迭代的移动机器人在线自适应轨迹跟踪积分强化学习
本文研究了一种基于积分函数的非完整移动机器人的轨迹跟踪控制方法。当参考轨迹对应的平动速度和角速度一定时,机器人与参考轨迹之间的跟踪误差动力学表现为定常输入-仿射连续非线性系统。本文将积分强化学习应用于跟踪误差动力学,通过逼近沿机器人轨迹收集的数据的值泛函。本文提出了一种实现基于irl的在线策略迭代的具体方法,包括批量最小二乘最小化。近似值函数更新控制策略以补偿驱动机器人的平动速度和角速度。数值例子说明了积分强化学习的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信