{"title":"Computational Studies of Earth Air Heat Exchanger using CFD: Parametric Analysis","authors":"Shiv Lal","doi":"10.54060/jmce.v3i1.29","DOIUrl":null,"url":null,"abstract":"Parametric studies of earth air tunnel heat exchanger (EATHE) using FLUENT 6.3 Computational fluid dynamics (CFD) software have been carried out in this paper. From the parametric analysis it is found that economic analysis of the system is required for the optimization of length, diameter, and depth of buried pipe. For a long earth air tunnel more than 60 m, soil thermal conductivity doesn’t give any significant effect. The higher mass flow rate also increases the overall energy conservation potential of the system, but it reduces thermal comfort. So, the mass flow rate also takes to optimize according to the requirement. This study is beneficial to the design and energy researchers of this field.","PeriodicalId":142002,"journal":{"name":"Journal of Mechanical and Construction Engineering (JMCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical and Construction Engineering (JMCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54060/jmce.v3i1.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Parametric studies of earth air tunnel heat exchanger (EATHE) using FLUENT 6.3 Computational fluid dynamics (CFD) software have been carried out in this paper. From the parametric analysis it is found that economic analysis of the system is required for the optimization of length, diameter, and depth of buried pipe. For a long earth air tunnel more than 60 m, soil thermal conductivity doesn’t give any significant effect. The higher mass flow rate also increases the overall energy conservation potential of the system, but it reduces thermal comfort. So, the mass flow rate also takes to optimize according to the requirement. This study is beneficial to the design and energy researchers of this field.