{"title":"Rost Motives and H90","authors":"C. Haesemeyer, C. Weibel","doi":"10.2307/j.ctv941tx2.9","DOIUrl":null,"url":null,"abstract":"This chapter introduces the notion of a Rost motive, which is a summand of the motive of a Rost variety 𝑋. It highlights the theorem that, assuming that Rost motives exist and H90(n − 1) holds, then 𝐻𝑛+1\n ét(𝑘, ℤ(𝑛)) injects into 𝐻𝑛+1\n ét(𝑘(𝑋), ℤ(𝑛)). While there may be many Rost varieties associated to a given symbol, there is essentially only one Rost motive. The Rost motive captures the part of the cohomology of a Rost variety 𝑋. Since a Rost motive is a special kind of symmetric Chow motive, the chapter begins by recalling what this means. It then introduces the notion of 𝔛-duality. This duality plays an important role in the axioms defining Rost motives, as well as a role in the construction of the Rost motive in the next chapter. Finally, this chapter assumes that Rost motives exist and proves a key theorem.","PeriodicalId":145287,"journal":{"name":"The Norm Residue Theorem in Motivic Cohomology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Norm Residue Theorem in Motivic Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv941tx2.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter introduces the notion of a Rost motive, which is a summand of the motive of a Rost variety 𝑋. It highlights the theorem that, assuming that Rost motives exist and H90(n − 1) holds, then 𝐻𝑛+1
ét(𝑘, ℤ(𝑛)) injects into 𝐻𝑛+1
ét(𝑘(𝑋), ℤ(𝑛)). While there may be many Rost varieties associated to a given symbol, there is essentially only one Rost motive. The Rost motive captures the part of the cohomology of a Rost variety 𝑋. Since a Rost motive is a special kind of symmetric Chow motive, the chapter begins by recalling what this means. It then introduces the notion of 𝔛-duality. This duality plays an important role in the axioms defining Rost motives, as well as a role in the construction of the Rost motive in the next chapter. Finally, this chapter assumes that Rost motives exist and proves a key theorem.