Weighted Linear Loss Twin Support Vector Clustering

Reshma Khemchandani, Aman Pal
{"title":"Weighted Linear Loss Twin Support Vector Clustering","authors":"Reshma Khemchandani, Aman Pal","doi":"10.1145/2888451.2888467","DOIUrl":null,"url":null,"abstract":"Traditional point based clustering methods such as k-means [1], k-median [2], etc. work by partitioning the data into clusters based on the cluster prototype points. These methods perform poorly in case when data is not distributed around several cluster points. In contrast to these, plane based clustering methods such as k-plane clustering [3], local k-proximal plane clustering [4], etc. have been proposed in literature. These methods calculate k cluster center planes and partition the data into k clusters according to the proximity of the datapoints with these k planes. Working on the lines of [5], in this paper, we have presented a Weighted Linear Loss Twin Support Vector Clustering termed as WLL-TWSVC for clustering problems. By introducing the weighted linear loss in the formulation of TWSVC leads to solving system of linear equations with lower computational cost as opposed to solving series of quadratic programming problems along with system of linear equations as in TWSVC. We have also introduces a regularization term in the objective function which takes care of structural risk component along with empirical risk.","PeriodicalId":136431,"journal":{"name":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IKDD Conference on Data Science, 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2888451.2888467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Traditional point based clustering methods such as k-means [1], k-median [2], etc. work by partitioning the data into clusters based on the cluster prototype points. These methods perform poorly in case when data is not distributed around several cluster points. In contrast to these, plane based clustering methods such as k-plane clustering [3], local k-proximal plane clustering [4], etc. have been proposed in literature. These methods calculate k cluster center planes and partition the data into k clusters according to the proximity of the datapoints with these k planes. Working on the lines of [5], in this paper, we have presented a Weighted Linear Loss Twin Support Vector Clustering termed as WLL-TWSVC for clustering problems. By introducing the weighted linear loss in the formulation of TWSVC leads to solving system of linear equations with lower computational cost as opposed to solving series of quadratic programming problems along with system of linear equations as in TWSVC. We have also introduces a regularization term in the objective function which takes care of structural risk component along with empirical risk.
加权线性损失双支持向量聚类
传统的基于点的聚类方法,如k-means[1]、k-median[2]等,是根据聚类原型点将数据划分为簇。当数据不分布在几个聚类点时,这些方法的性能很差。与此相反,文献中提出了基于平面的聚类方法,如k-平面聚类[3]、局部k-近端平面聚类[4]等。这些方法计算k个聚类中心平面,并根据数据点与这k个平面的接近程度将数据划分为k个聚类。基于[5]的思路,在本文中,我们提出了一种加权线性损失双支持向量聚类,称为WLL-TWSVC,用于聚类问题。通过在TWSVC的公式中引入加权线性损失,可以以较低的计算成本求解线性方程组,而不是像TWSVC那样求解线性方程组的一系列二次规划问题。我们还在目标函数中引入了一个正则化项,它既考虑了结构风险成分,也考虑了经验风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信