{"title":"Chaos","authors":"Vincent Chaudet","doi":"10.3917/eres.bouti.2009.01.0100","DOIUrl":null,"url":null,"abstract":"dead, recovered, and quarantined cases. In this paper, we use the dataset of South Korea comprised of several control policies implemented for minimizing the spread of COVID-19. We compare the performance of the stacked Bi-LSTM with the traditional time-series models and LSTM model using the performance metrics mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). Moreover, we study the impact of control policies on forecasting accuracy. We further study the impact of changing the Bi-LSTM default activation functions Tanh with ReLU on forecasting accuracy. The research provides insight to policymakers to optimize the pooling of resources more optimally on the correct date and time prior to the event and to control the spread by employing various strategies in the meantime.","PeriodicalId":336814,"journal":{"name":"L'ABC de la VAE","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L'ABC de la VAE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3917/eres.bouti.2009.01.0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
dead, recovered, and quarantined cases. In this paper, we use the dataset of South Korea comprised of several control policies implemented for minimizing the spread of COVID-19. We compare the performance of the stacked Bi-LSTM with the traditional time-series models and LSTM model using the performance metrics mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). Moreover, we study the impact of control policies on forecasting accuracy. We further study the impact of changing the Bi-LSTM default activation functions Tanh with ReLU on forecasting accuracy. The research provides insight to policymakers to optimize the pooling of resources more optimally on the correct date and time prior to the event and to control the spread by employing various strategies in the meantime.