Balanced parallel FP-Growth with MapReduce

Le Zhou, Zhiyong Zhong, Jin Chang, Junjie Li, J. Huang, Shengzhong Feng
{"title":"Balanced parallel FP-Growth with MapReduce","authors":"Le Zhou, Zhiyong Zhong, Jin Chang, Junjie Li, J. Huang, Shengzhong Feng","doi":"10.1109/YCICT.2010.5713090","DOIUrl":null,"url":null,"abstract":"Frequent itemset mining (FIM) plays an essential role in mining associations, correlations and many other important data mining tasks. Unfortunately, as the volume of dataset gets larger day by day, most of the FIM algorithms in literature become ineffective due to either too huge resource requirement or too much communication cost. In this paper, we propose a balanced parallel FP-Growth algorithm BPFP, based on the PFP algorithm [1], which parallelizes FP-Growth in the MapReduce approach. BPFP adds into PFP load balance feature, which improves parallelization and thereby improves performance. Through empirical study, BPFP outperformed the PFP which uses some simple grouping strategy.","PeriodicalId":179847,"journal":{"name":"2010 IEEE Youth Conference on Information, Computing and Telecommunications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"136","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Youth Conference on Information, Computing and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2010.5713090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 136

Abstract

Frequent itemset mining (FIM) plays an essential role in mining associations, correlations and many other important data mining tasks. Unfortunately, as the volume of dataset gets larger day by day, most of the FIM algorithms in literature become ineffective due to either too huge resource requirement or too much communication cost. In this paper, we propose a balanced parallel FP-Growth algorithm BPFP, based on the PFP algorithm [1], which parallelizes FP-Growth in the MapReduce approach. BPFP adds into PFP load balance feature, which improves parallelization and thereby improves performance. Through empirical study, BPFP outperformed the PFP which uses some simple grouping strategy.
基于MapReduce的均衡并行fp增长
频繁项集挖掘(FIM)在挖掘关联、相关性和许多其他重要的数据挖掘任务中起着至关重要的作用。不幸的是,随着数据量的日益增大,文献中的大多数FIM算法由于资源需求太大或通信成本太高而变得无效。在本文中,我们提出了一种平衡并行FP-Growth算法BPFP,该算法基于PFP算法[1],并行化MapReduce方法中的FP-Growth。BPFP在PFP中增加了负载平衡特性,提高了并行性,从而提高了性能。通过实证研究,BPFP优于使用一些简单分组策略的PFP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信