Adaptive Fixed-Time Constraint Control for Human-Robot Interaction with Uncertainties using Neural Networks

Jing Lin
{"title":"Adaptive Fixed-Time Constraint Control for Human-Robot Interaction with Uncertainties using Neural Networks","authors":"Jing Lin","doi":"10.1145/3522749.3522750","DOIUrl":null,"url":null,"abstract":"In this paper, a new control scheme using exponential-type barrier Lyapunov function (EBLF) is proposed for human-robot interaction, which can achieve high-performance trajectory tracking without dependence on the initial value. It has shown that the tracking error driven by the proposed control scheme will converge to a small set around equilibrium within a fixed time on different initial conditions. Moreover, human motion dynamics is captured by radial basis function neural networks (RBFNN) featured by universal approximation. Simulation results have demonstrated the satisfied performance of the developed control scheme.","PeriodicalId":361473,"journal":{"name":"Proceedings of the 6th International Conference on Control Engineering and Artificial Intelligence","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Control Engineering and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3522749.3522750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new control scheme using exponential-type barrier Lyapunov function (EBLF) is proposed for human-robot interaction, which can achieve high-performance trajectory tracking without dependence on the initial value. It has shown that the tracking error driven by the proposed control scheme will converge to a small set around equilibrium within a fixed time on different initial conditions. Moreover, human motion dynamics is captured by radial basis function neural networks (RBFNN) featured by universal approximation. Simulation results have demonstrated the satisfied performance of the developed control scheme.
基于神经网络的不确定性人机交互自适应固定时间约束控制
本文提出了一种基于指数型障碍李雅普诺夫函数(EBLF)的人机交互控制方案,该方案可以实现不依赖于初始值的高性能轨迹跟踪。结果表明,在不同的初始条件下,所提出的控制方案驱动的跟踪误差在固定时间内收敛到平衡点附近的一个小集。此外,利用径向基函数神经网络(RBFNN)以通用逼近为特征来捕捉人体运动动态。仿真结果表明所设计的控制方案具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信