A Task Decomposition Algorithm Using Mixtures of Normal Distributions for Classification Problems

S. Ishihara, H. Igarashi
{"title":"A Task Decomposition Algorithm Using Mixtures of Normal Distributions for Classification Problems","authors":"S. Ishihara, H. Igarashi","doi":"10.1109/HIS.2006.9","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for decomposing a multi-class classification problem into a set of two-class classification problems. The algorithm divides a set of input pattern vectors in each class into subsets according to the distribution of the selected input pattern vectors. The distribution is represented by a mixture of normal distributions, and the number of subsets is defined by using MDL criterion. The algorithm can be applied for constructing an effective modular neural network. We show also the experimental results of the construction and the advantages of the algorithm.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an algorithm for decomposing a multi-class classification problem into a set of two-class classification problems. The algorithm divides a set of input pattern vectors in each class into subsets according to the distribution of the selected input pattern vectors. The distribution is represented by a mixture of normal distributions, and the number of subsets is defined by using MDL criterion. The algorithm can be applied for constructing an effective modular neural network. We show also the experimental results of the construction and the advantages of the algorithm.
基于混合正态分布的分类问题任务分解算法
提出了一种将多类分类问题分解为两类分类问题集的算法。该算法根据所选输入模式向量的分布,将每一类的输入模式向量集合划分为子集。该分布由混合正态分布表示,子集数量由MDL准则定义。该算法可用于构造有效的模块化神经网络。最后给出了算法构造的实验结果和算法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信