Reputational Genetic Model for Regular Inference

P. Grachev
{"title":"Reputational Genetic Model for Regular Inference","authors":"P. Grachev","doi":"10.1145/3373419.3373445","DOIUrl":null,"url":null,"abstract":"The regular inference is one of the main problems of the formal language theory, which is to synthesize a finite-state automaton corresponding to some unknown regular language represented with a list of positive and negative examples. In this paper, we propose a new algorithm for regular inference along with special measures for evaluating quality of elements of automaton we call reputation. The algorithm belongs to genetic algorithms family and transforms candidate automatons based on the reputation of its elements. We prove effectiveness of our model by experiments on pregenerated datasets.","PeriodicalId":352528,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Advances in Image Processing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Advances in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373419.3373445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The regular inference is one of the main problems of the formal language theory, which is to synthesize a finite-state automaton corresponding to some unknown regular language represented with a list of positive and negative examples. In this paper, we propose a new algorithm for regular inference along with special measures for evaluating quality of elements of automaton we call reputation. The algorithm belongs to genetic algorithms family and transforms candidate automatons based on the reputation of its elements. We prove effectiveness of our model by experiments on pregenerated datasets.
常规推理的声誉遗传模型
正则推理是形式语言理论的主要问题之一,即合成一个有限状态自动机,该自动机对应于用正反例证列表表示的某种未知正则表达式语言。在本文中,我们提出了一种新的正则推理算法,以及评估自动机元素质量的特殊方法,我们称之为声誉。该算法属于遗传算法系列,根据候选自动机元素的声誉对其进行转换。我们通过预生成数据集的实验证明了我们模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信