On the condition of adaptive neurofuzzy models

M. Brown, P. E. An, C. Harris
{"title":"On the condition of adaptive neurofuzzy models","authors":"M. Brown, P. E. An, C. Harris","doi":"10.1109/FUZZY.1995.409755","DOIUrl":null,"url":null,"abstract":"Learning within fuzzy and neurofuzzy systems is becomingly increasingly important as researchers try to infer qualitative, vague information from quantitative, numeric data. The fuzzy representation of an adaptive neurofuzzy system is important both for initialisation and validation purposes, where a designer needs to interpret the knowledge stored in a network. Therefore it is important to study the convergence and rate of convergence characteristics of the parameters in a neurofuzzy model and investigate how this depends on the system's structure. This paper considers how the condition of the input fuzzy sets determines the convergence and generalisation abilities of the network and describes several new results about instantaneous least mean square training rules.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Learning within fuzzy and neurofuzzy systems is becomingly increasingly important as researchers try to infer qualitative, vague information from quantitative, numeric data. The fuzzy representation of an adaptive neurofuzzy system is important both for initialisation and validation purposes, where a designer needs to interpret the knowledge stored in a network. Therefore it is important to study the convergence and rate of convergence characteristics of the parameters in a neurofuzzy model and investigate how this depends on the system's structure. This paper considers how the condition of the input fuzzy sets determines the convergence and generalisation abilities of the network and describes several new results about instantaneous least mean square training rules.<>
在自适应神经模糊模型的条件下
随着研究人员试图从定量、数字数据中推断定性、模糊的信息,模糊和神经模糊系统中的学习变得越来越重要。自适应神经模糊系统的模糊表示对于初始化和验证目的都很重要,因为设计者需要解释存储在网络中的知识。因此,研究神经模糊模型中参数的收敛性和收敛速度特征以及这与系统结构的关系是非常重要的。本文考虑了输入模糊集的条件如何决定网络的收敛性和泛化能力,并描述了几个关于瞬时最小均方训练规则的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信