MAU-Net: A Multiscale Attention Encoder-decoder Network for Liver and Liver-tumor Segmentation

Le Liu, Jian Su, HuLin Liu, Weiqiang Zhao, Xiaogang Du, Tao Lei
{"title":"MAU-Net: A Multiscale Attention Encoder-decoder Network for Liver and Liver-tumor Segmentation","authors":"Le Liu, Jian Su, HuLin Liu, Weiqiang Zhao, Xiaogang Du, Tao Lei","doi":"10.1145/3512388.3512418","DOIUrl":null,"url":null,"abstract":"U-Net and improved U-Nets suffer from two problems for liver and liver-tumor segmentation. The first is that skip connections in encoder-decoder networks bring interference information. The second is that the convolutional kernel with the fixed receptive field does not match the liver-tumor with changing shape and position. To address the above problems, we propose a multiscale attention encoder-decoder network (MAU-Net) for liver and liver-tumor segmentation. First, MAU-Net employs self-attentive gating guidance module in the skip connection to suppresses irrelevant regions. Secondly, MAU-Net employs a multi-branch feature fusion module to extract multiscale features for the segmentation of liver-tumor. We evaluate the proposed method on the public LiTS dataset. The experimental results show that the average dice of liver and liver-tumor segmentation by MAU-Net are 96.11% and 86.90%, respectively. Experiments demonstrate that MAU-Net is superior to state-of-the-art networks for liver and liver-tumor segmentation.","PeriodicalId":434878,"journal":{"name":"Proceedings of the 2022 5th International Conference on Image and Graphics Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Image and Graphics Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512388.3512418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

U-Net and improved U-Nets suffer from two problems for liver and liver-tumor segmentation. The first is that skip connections in encoder-decoder networks bring interference information. The second is that the convolutional kernel with the fixed receptive field does not match the liver-tumor with changing shape and position. To address the above problems, we propose a multiscale attention encoder-decoder network (MAU-Net) for liver and liver-tumor segmentation. First, MAU-Net employs self-attentive gating guidance module in the skip connection to suppresses irrelevant regions. Secondly, MAU-Net employs a multi-branch feature fusion module to extract multiscale features for the segmentation of liver-tumor. We evaluate the proposed method on the public LiTS dataset. The experimental results show that the average dice of liver and liver-tumor segmentation by MAU-Net are 96.11% and 86.90%, respectively. Experiments demonstrate that MAU-Net is superior to state-of-the-art networks for liver and liver-tumor segmentation.
MAU-Net:用于肝脏和肝脏肿瘤分割的多尺度注意力编码器-解码器网络
U-Net和改进的U-Nets在肝脏和肝脏肿瘤分割方面存在两个问题。首先,编码器-解码器网络中的跳过连接会带来干扰信息。二是接受野固定的卷积核与形状和位置变化的肝脏肿瘤不匹配。为了解决上述问题,我们提出了一种用于肝脏和肝脏肿瘤分割的多尺度注意编码器-解码器网络(MAU-Net)。首先,MAU-Net在跳接中采用自关注门控制导模块抑制不相关区域。其次,MAU-Net采用多分支特征融合模块提取肝脏肿瘤的多尺度特征进行分割;我们在公共LiTS数据集上评估了所提出的方法。实验结果表明,MAU-Net分割肝脏和肝脏肿瘤的平均准确率分别为96.11%和86.90%。实验表明,MAU-Net在肝脏和肝脏肿瘤分割方面优于最先进的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信