Enlarging the discriminability of bag-of-words representations with deep convolutional features

D. Manger, D. Willersinn
{"title":"Enlarging the discriminability of bag-of-words representations with deep convolutional features","authors":"D. Manger, D. Willersinn","doi":"10.1109/IPTA.2017.8310096","DOIUrl":null,"url":null,"abstract":"In this work, we propose an extension of established image retrieval models which are based on the bag-of-words representation, i.e. on models which quantize local features such as SIFT to leverage an inverted file indexing scheme for speedup. Since the quantization of local features impairs their discriminability, the ability to retrieve those database images which show the same object or scene to a given query image is decreasing with the growing number of images in the database. We address this issue by extending a quantized local feature with information from its local spatial neighborhood incorporating a representation based on pooling features from deep convolutional neural network layer outputs. Using four public datasets, we evaluate both the discriminability of the representation and its overall performance in a large-scale image retrieval setup.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we propose an extension of established image retrieval models which are based on the bag-of-words representation, i.e. on models which quantize local features such as SIFT to leverage an inverted file indexing scheme for speedup. Since the quantization of local features impairs their discriminability, the ability to retrieve those database images which show the same object or scene to a given query image is decreasing with the growing number of images in the database. We address this issue by extending a quantized local feature with information from its local spatial neighborhood incorporating a representation based on pooling features from deep convolutional neural network layer outputs. Using four public datasets, we evaluate both the discriminability of the representation and its overall performance in a large-scale image retrieval setup.
利用深度卷积特征扩大词袋表示的可判别性
在这项工作中,我们提出了一种基于词袋表示的已建立的图像检索模型的扩展,即基于量化局部特征(如SIFT)的模型来利用反向文件索引方案来加速。由于局部特征的量化削弱了它们的可辨别性,检索那些与给定查询图像显示相同对象或场景的数据库图像的能力随着数据库中图像数量的增加而降低。我们通过使用来自其局部空间邻域的信息扩展量化局部特征,并结合基于深度卷积神经网络层输出的池化特征的表示来解决这个问题。使用四个公共数据集,我们评估了表示的可辨别性及其在大规模图像检索设置中的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信