Real-Time Epilepsy Detection with IMU and Low Power Processor Design

Yu-Ju Su, K. Wen, M. Cheng, Chen-Nen Chang
{"title":"Real-Time Epilepsy Detection with IMU and Low Power Processor Design","authors":"Yu-Ju Su, K. Wen, M. Cheng, Chen-Nen Chang","doi":"10.1109/BMEiCON56653.2022.10012112","DOIUrl":null,"url":null,"abstract":"In this work, we proposed a system that supplies real-time epilepsy detection system (RED system) with a single inertial measurement unit (IMU) and a low power processing unit. Since the accuracy can reach 99.81%, the specificity can reach 99.81%, and false positive rate of 0.19%, it not only ensures reliability but also provides a quantification analysis for diagnosis. The proposed method has been verified by 60 patients and the processing unit has been implemented into a chip using TSMC 0.18 μm process, which proves the feasibility of mobile device to the RED system.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"48 16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we proposed a system that supplies real-time epilepsy detection system (RED system) with a single inertial measurement unit (IMU) and a low power processing unit. Since the accuracy can reach 99.81%, the specificity can reach 99.81%, and false positive rate of 0.19%, it not only ensures reliability but also provides a quantification analysis for diagnosis. The proposed method has been verified by 60 patients and the processing unit has been implemented into a chip using TSMC 0.18 μm process, which proves the feasibility of mobile device to the RED system.
基于IMU和低功耗处理器的实时癫痫检测设计
在这项工作中,我们提出了一种提供实时癫痫检测系统(RED系统)的系统,该系统具有单惯性测量单元(IMU)和低功耗处理单元。准确率可达99.81%,特异性可达99.81%,假阳性率为0.19%,既保证了可靠性,又为诊断提供了定量分析。该方法已通过60例患者验证,并采用TSMC 0.18 μm工艺将处理单元实现在芯片上,证明了移动设备对RED系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信