Spectral Attention-Driven Intelligent Target Signal Identification on a Wideband Spectrum

G. Mendis, Jin Wei, A. Madanayake, S. Mandal
{"title":"Spectral Attention-Driven Intelligent Target Signal Identification on a Wideband Spectrum","authors":"G. Mendis, Jin Wei, A. Madanayake, S. Mandal","doi":"10.1109/CCAAW.2019.8904904","DOIUrl":null,"url":null,"abstract":"Due to the advances of artificial intelligence, machine learning techniques have been applied for spectrum sensing and modulation recognition. However, there still remain essential challenges in wideband spectrum sensing. Signal processing in the wideband spectrum is computationally expensive. Additionally, it is highly possible that only a small portion of the wideband spectrum information contain useful features for the targeted application. Therefore, to achieve an effective tradeoff between the low computational complexity and the high spectrum-sensing accuracy, a spectral attention-driven reinforcement learning based intelligent method is developed for effective and efficient detection of event-driven target signals in a wideband spectrum. As the first stage to achieve this goal, it is assumed that the modulation technique used is available as a prior knowledge of the targeted important signal. The proposed spectral attention-driven intelligent method consists of two main components, a spectral correlation function (SCF) based spectral visualization scheme and a spectral attention-driven reinforcement learning mechanism that adaptively selects the spectrum range and implements the intelligent signal detection. Simulations illustrate that because of the effectively selecting the spectrum ranges to be observed, the proposed method can achieve > 90% accuracy of signal detection while observation of spectrum and calculation of SCF is limited to 5 out of 64 of spectrum locations.","PeriodicalId":196580,"journal":{"name":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAAW.2019.8904904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the advances of artificial intelligence, machine learning techniques have been applied for spectrum sensing and modulation recognition. However, there still remain essential challenges in wideband spectrum sensing. Signal processing in the wideband spectrum is computationally expensive. Additionally, it is highly possible that only a small portion of the wideband spectrum information contain useful features for the targeted application. Therefore, to achieve an effective tradeoff between the low computational complexity and the high spectrum-sensing accuracy, a spectral attention-driven reinforcement learning based intelligent method is developed for effective and efficient detection of event-driven target signals in a wideband spectrum. As the first stage to achieve this goal, it is assumed that the modulation technique used is available as a prior knowledge of the targeted important signal. The proposed spectral attention-driven intelligent method consists of two main components, a spectral correlation function (SCF) based spectral visualization scheme and a spectral attention-driven reinforcement learning mechanism that adaptively selects the spectrum range and implements the intelligent signal detection. Simulations illustrate that because of the effectively selecting the spectrum ranges to be observed, the proposed method can achieve > 90% accuracy of signal detection while observation of spectrum and calculation of SCF is limited to 5 out of 64 of spectrum locations.
频谱注意驱动的宽带智能目标信号识别
由于人工智能的进步,机器学习技术已被应用于频谱感知和调制识别。然而,在宽带频谱传感方面仍然存在着重大的挑战。宽带频谱中的信号处理在计算上是昂贵的。此外,很可能只有一小部分宽带频谱信息包含对目标应用有用的特征。因此,为了在低计算复杂度和高频谱感知精度之间实现有效的权衡,开发了一种基于频谱注意驱动强化学习的智能方法,用于在宽带频谱中高效检测事件驱动的目标信号。作为实现这一目标的第一阶段,假设所使用的调制技术作为目标重要信号的先验知识可用。本文提出的频谱注意驱动智能方法包括基于频谱相关函数(SCF)的频谱可视化方案和自适应选择频谱范围并实现智能信号检测的频谱注意驱动强化学习机制两个主要部分。仿真结果表明,由于有效地选择了待观测的频谱范围,该方法的信号检测精度可达90%以上,而对频谱的观测和SCF的计算仅限于64个频谱位置中的5个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信