Amplitude dependent analysis and design of nonlinear control systems in a frequency domain

Y. Okuyama, F. Takemori
{"title":"Amplitude dependent analysis and design of nonlinear control systems in a frequency domain","authors":"Y. Okuyama, F. Takemori","doi":"10.1109/SICE.2000.889655","DOIUrl":null,"url":null,"abstract":"Examines the amplitude dependent behavior of nonlinear feedback systems in a frequency domain. We apply a robust stability condition to a feedback control system containing a nonlinear element in the forward path. In addition, we derive an instability condition for that type of nonlinear feedback system. By using these concepts, we can accurately predict and estimate the existence of a periodic oscillation, that is, a limit cycle in a phase space of the nonlinear dynamical system. Two numerical examples for that type of control system are presented to verify the method.","PeriodicalId":254956,"journal":{"name":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2000.889655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Examines the amplitude dependent behavior of nonlinear feedback systems in a frequency domain. We apply a robust stability condition to a feedback control system containing a nonlinear element in the forward path. In addition, we derive an instability condition for that type of nonlinear feedback system. By using these concepts, we can accurately predict and estimate the existence of a periodic oscillation, that is, a limit cycle in a phase space of the nonlinear dynamical system. Two numerical examples for that type of control system are presented to verify the method.
频域非线性控制系统的幅值相关分析与设计
研究频域非线性反馈系统的幅值依赖行为。对前向路径中含有非线性元素的反馈控制系统,给出了鲁棒稳定性条件。此外,我们还导出了该类非线性反馈系统的不稳定性条件。利用这些概念,我们可以准确地预测和估计周期振荡的存在性,即非线性动力系统在相空间中的极限环。给出了该控制系统的两个数值算例来验证该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信