Evaluating classification methods applied to multi-label tasks in different domains

A. M. Santos, Anne M. P. Canuto, Antonino Feitosa Neto
{"title":"Evaluating classification methods applied to multi-label tasks in different domains","authors":"A. M. Santos, Anne M. P. Canuto, Antonino Feitosa Neto","doi":"10.1109/HIS.2010.5600014","DOIUrl":null,"url":null,"abstract":"In traditional classification problems (single-label), patterns are associated with a single label from the set of disjoint labels (classes). When an example can simultaneously belong to more than one label, this classification problem is known as multi-label classification problem. Multi-label classification methods have been increasingly used in modern application, such as music categorization, functional genomics and semantic annotation of images. This paper presents a comparative analysis of some existing multi-label classification methods applied to different domains. The main aim of this analysis is to evaluate the performance of such methods in different tasks and using different evaluation metrics.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5600014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In traditional classification problems (single-label), patterns are associated with a single label from the set of disjoint labels (classes). When an example can simultaneously belong to more than one label, this classification problem is known as multi-label classification problem. Multi-label classification methods have been increasingly used in modern application, such as music categorization, functional genomics and semantic annotation of images. This paper presents a comparative analysis of some existing multi-label classification methods applied to different domains. The main aim of this analysis is to evaluate the performance of such methods in different tasks and using different evaluation metrics.
评价不同领域多标签任务的分类方法
在传统的分类问题(单标签)中,模式与不相交标签(类)集合中的单个标签相关联。当一个示例可以同时属于多个标签时,这种分类问题称为多标签分类问题。多标签分类方法在现代应用中得到了越来越多的应用,如音乐分类、功能基因组学和图像语义标注等。本文对目前应用于不同领域的多标签分类方法进行了比较分析。本分析的主要目的是评估这些方法在不同任务中的性能,并使用不同的评估指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信