Ruling-based table analysis for noisy handwritten documents

MOCR '13 Pub Date : 2013-08-24 DOI:10.1145/2505377.2505392
Jin Chen, D. Lopresti
{"title":"Ruling-based table analysis for noisy handwritten documents","authors":"Jin Chen, D. Lopresti","doi":"10.1145/2505377.2505392","DOIUrl":null,"url":null,"abstract":"Table analysis can be a valuable step in document image analysis. In the case of noisy handwritten documents, various artifacts complicate the task of locating tables on a page and segmenting them into cells. Our ruling-based approach first detects line segments to ensure high recall of table rulings, and then computes the intersections of horizontal and vertical rulings as key points. We then employ an optimization procedure to select the most probable subset of these key points which constitute the table structure. Finally, we decompose a table into a 2-D arrangement of cells using the key points. Experimental evaluation involving 61 handwritten pages from 17 table classes show a table cell precision of 89% and a recall of 88%.","PeriodicalId":288465,"journal":{"name":"MOCR '13","volume":"30 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOCR '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505377.2505392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Table analysis can be a valuable step in document image analysis. In the case of noisy handwritten documents, various artifacts complicate the task of locating tables on a page and segmenting them into cells. Our ruling-based approach first detects line segments to ensure high recall of table rulings, and then computes the intersections of horizontal and vertical rulings as key points. We then employ an optimization procedure to select the most probable subset of these key points which constitute the table structure. Finally, we decompose a table into a 2-D arrangement of cells using the key points. Experimental evaluation involving 61 handwritten pages from 17 table classes show a table cell precision of 89% and a recall of 88%.
噪声手写文档的基于规则的表分析
表格分析在文档图像分析中是一个很有价值的步骤。在嘈杂的手写文档的情况下,各种各样的工件使在页面上定位表并将它们分割成单元格的任务复杂化。我们的基于规则的方法首先检测线段,以确保表规则的高召回率,然后计算水平和垂直规则的交叉点作为关键点。然后,我们使用一个优化过程来选择构成表结构的这些关键点的最可能子集。最后,我们使用关键点将表格分解为二维单元格排列。涉及17个表格类别的61个手写页面的实验评估显示,表格单元精度为89%,召回率为88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信