Parameter design of grid-tied inverter using reinforcement learning

Z. Wang, W. Wang
{"title":"Parameter design of grid-tied inverter using reinforcement learning","authors":"Z. Wang, W. Wang","doi":"10.1049/icp.2021.2547","DOIUrl":null,"url":null,"abstract":"Grid-tied inverters have been widely adopted in distributed generation systems. The output current distortion and oscillation occur under certain conditions especially in the weak grid and multi-parallel inverters. To maintain the stability and ensure the dynamic and steady performance of current tracking, the controller parameters required iterative design and evaluation. Taking single phase inverter as an example, traditional design approaches are discussed first. Then, considering the difficulties in the parameter design process, deep reinforcement learning (DRL) is introduced to explore the optimal combination of controller parameters, by which the parameters of controllers can be automatically tuned. The realization of the DRL approach is discussed in detail and simulation validates the correctness of the attempt.","PeriodicalId":242596,"journal":{"name":"2021 Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2021)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/icp.2021.2547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grid-tied inverters have been widely adopted in distributed generation systems. The output current distortion and oscillation occur under certain conditions especially in the weak grid and multi-parallel inverters. To maintain the stability and ensure the dynamic and steady performance of current tracking, the controller parameters required iterative design and evaluation. Taking single phase inverter as an example, traditional design approaches are discussed first. Then, considering the difficulties in the parameter design process, deep reinforcement learning (DRL) is introduced to explore the optimal combination of controller parameters, by which the parameters of controllers can be automatically tuned. The realization of the DRL approach is discussed in detail and simulation validates the correctness of the attempt.
基于强化学习的并网逆变器参数设计
并网逆变器已广泛应用于分布式发电系统中。在一定条件下,特别是在弱电网和多并联逆变器中,会产生输出电流畸变和振荡。为了保持稳定性,保证电流跟踪的动态稳定性能,需要对控制器参数进行迭代设计和评估。以单相逆变器为例,首先讨论了传统的设计方法。然后,考虑到参数设计过程中的难点,引入深度强化学习(DRL),探索控制器参数的最优组合,实现控制器参数的自动整定。详细讨论了DRL方法的实现,并通过仿真验证了该方法的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信