Diseño e implementación de un algoritmo genético para la predicción de una variable

Hilda Avelar Uribe, Ludivina Gutiérrez Torres, Ismael Zúñiga Félix, Z. Hernández
{"title":"Diseño e implementación de un algoritmo genético para la predicción de una variable","authors":"Hilda Avelar Uribe, Ludivina Gutiérrez Torres, Ismael Zúñiga Félix, Z. Hernández","doi":"10.13053/rcs-148-8-14","DOIUrl":null,"url":null,"abstract":"This article describes the application of a genetic algorithm to obtain a better forecast precision of any variable using historical data. In order to measure this precision, the exchange rate Mexican Peso – US Dollar in Mexico was used in comparison with the predictions calculated by the statistical method moving averages. The problem consisted of obtaining the values that minimize the average quadratic error between the real value and the forecast value to obtain a prediction with a minimum error margin. The genetic algorithm application was designed using the following real representation chromosomes: the crossing BLX-0.5 operator as well as the non-uniform mutation operator. These operators offer a better capacity on exploration and exploitation resulting in the genetic algorithm that provides a precision increase of 14% in comparison to the precision of the statistical moving average method.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-8-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article describes the application of a genetic algorithm to obtain a better forecast precision of any variable using historical data. In order to measure this precision, the exchange rate Mexican Peso – US Dollar in Mexico was used in comparison with the predictions calculated by the statistical method moving averages. The problem consisted of obtaining the values that minimize the average quadratic error between the real value and the forecast value to obtain a prediction with a minimum error margin. The genetic algorithm application was designed using the following real representation chromosomes: the crossing BLX-0.5 operator as well as the non-uniform mutation operator. These operators offer a better capacity on exploration and exploitation resulting in the genetic algorithm that provides a precision increase of 14% in comparison to the precision of the statistical moving average method.
预测一个变量的遗传算法的设计与实现
本文介绍了遗传算法的应用,利用历史数据对任意变量获得更好的预测精度。为了衡量这种精度,墨西哥比索对美元的汇率与统计方法移动平均计算的预测结果进行了比较。该问题主要是求出使实际值与预测值之间的平均二次误差最小的值,从而得到误差最小的预测值。遗传算法应用程序采用以下实数表示染色体:杂交BLX-0.5算子和非均匀突变算子。这些操作提供了更好的勘探和开发能力,导致遗传算法的精度比统计移动平均方法的精度提高了14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信