Feature Optimization for Predicting Readability of Arabic L1 and L2

NLP-TEA@ACL Pub Date : 2018-06-29 DOI:10.18653/v1/W18-3703
Hind Saddiki, Nizar Habash, V. Cavalli-Sforza, M. Al-Khalil
{"title":"Feature Optimization for Predicting Readability of Arabic L1 and L2","authors":"Hind Saddiki, Nizar Habash, V. Cavalli-Sforza, M. Al-Khalil","doi":"10.18653/v1/W18-3703","DOIUrl":null,"url":null,"abstract":"Advances in automatic readability assessment can impact the way people consume information in a number of domains. Arabic, being a low-resource and morphologically complex language, presents numerous challenges to the task of automatic readability assessment. In this paper, we present the largest and most in-depth computational readability study for Arabic to date. We study a large set of features with varying depths, from shallow words to syntactic trees, for both L1 and L2 readability tasks. Our best L1 readability accuracy result is 94.8% (75% error reduction from a commonly used baseline). The comparable results for L2 are 72.4% (45% error reduction). We also demonstrate the added value of leveraging L1 features for L2 readability prediction.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Advances in automatic readability assessment can impact the way people consume information in a number of domains. Arabic, being a low-resource and morphologically complex language, presents numerous challenges to the task of automatic readability assessment. In this paper, we present the largest and most in-depth computational readability study for Arabic to date. We study a large set of features with varying depths, from shallow words to syntactic trees, for both L1 and L2 readability tasks. Our best L1 readability accuracy result is 94.8% (75% error reduction from a commonly used baseline). The comparable results for L2 are 72.4% (45% error reduction). We also demonstrate the added value of leveraging L1 features for L2 readability prediction.
预测阿拉伯语L1和L2可读性的特征优化
自动可读性评估的进步可以影响人们在许多领域消费信息的方式。阿拉伯文作为一种资源少、形态复杂的语言,对自动可读性评价提出了许多挑战。在本文中,我们提出了迄今为止最大和最深入的阿拉伯语计算可读性研究。我们研究了大量具有不同深度的特征,从浅词到语法树,用于L1和L2可读性任务。我们的最佳L1可读性准确度结果为94.8%(与常用基线相比,误差减少了75%)。L2的可比结果为72.4%(误差减少45%)。我们还展示了利用L1特性预测L2可读性的附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信