Hind Saddiki, Nizar Habash, V. Cavalli-Sforza, M. Al-Khalil
{"title":"Feature Optimization for Predicting Readability of Arabic L1 and L2","authors":"Hind Saddiki, Nizar Habash, V. Cavalli-Sforza, M. Al-Khalil","doi":"10.18653/v1/W18-3703","DOIUrl":null,"url":null,"abstract":"Advances in automatic readability assessment can impact the way people consume information in a number of domains. Arabic, being a low-resource and morphologically complex language, presents numerous challenges to the task of automatic readability assessment. In this paper, we present the largest and most in-depth computational readability study for Arabic to date. We study a large set of features with varying depths, from shallow words to syntactic trees, for both L1 and L2 readability tasks. Our best L1 readability accuracy result is 94.8% (75% error reduction from a commonly used baseline). The comparable results for L2 are 72.4% (45% error reduction). We also demonstrate the added value of leveraging L1 features for L2 readability prediction.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Advances in automatic readability assessment can impact the way people consume information in a number of domains. Arabic, being a low-resource and morphologically complex language, presents numerous challenges to the task of automatic readability assessment. In this paper, we present the largest and most in-depth computational readability study for Arabic to date. We study a large set of features with varying depths, from shallow words to syntactic trees, for both L1 and L2 readability tasks. Our best L1 readability accuracy result is 94.8% (75% error reduction from a commonly used baseline). The comparable results for L2 are 72.4% (45% error reduction). We also demonstrate the added value of leveraging L1 features for L2 readability prediction.