Deep Reinforcement Learning with Parameterized Action Space for Object Detection

Zheng Wu, N. Khan, Lei Gao, L. Guan
{"title":"Deep Reinforcement Learning with Parameterized Action Space for Object Detection","authors":"Zheng Wu, N. Khan, Lei Gao, L. Guan","doi":"10.1109/ISM.2018.00025","DOIUrl":null,"url":null,"abstract":"Object detection is a fundamental task in computer vision. With the remarkable progress made in big visual data analytics and deep learning, Reinforcement Learning (RL) is becoming a promising framework to model the object detection problem since the detection procedure can be cast as a Markov decision process (MDP). We propose a Reinforcement Learning system with parameterized action space for image object detection. The proposed system uses an active agent exploring in a scene to identify the location of a target object, and learns a policy to refine the geometry of the agent by taking simple actions in parameterized space, which integrates the discrete actions and its corresponding continuous parameters. We then optimize the representation of the generated region proposals with the discriminative multiple canonical correlation analysis (DMCCA) [11] in preparation for classification with Fast R-CNN. Experiments on PASCAL VOC 2007 and 2012 datasets show the effectiveness of the proposed method.","PeriodicalId":308698,"journal":{"name":"2018 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Object detection is a fundamental task in computer vision. With the remarkable progress made in big visual data analytics and deep learning, Reinforcement Learning (RL) is becoming a promising framework to model the object detection problem since the detection procedure can be cast as a Markov decision process (MDP). We propose a Reinforcement Learning system with parameterized action space for image object detection. The proposed system uses an active agent exploring in a scene to identify the location of a target object, and learns a policy to refine the geometry of the agent by taking simple actions in parameterized space, which integrates the discrete actions and its corresponding continuous parameters. We then optimize the representation of the generated region proposals with the discriminative multiple canonical correlation analysis (DMCCA) [11] in preparation for classification with Fast R-CNN. Experiments on PASCAL VOC 2007 and 2012 datasets show the effectiveness of the proposed method.
基于参数化动作空间的深度强化学习用于目标检测
目标检测是计算机视觉中的一项基本任务。随着大视觉数据分析和深度学习的显著进步,强化学习(RL)正在成为一个有前途的框架来建模目标检测问题,因为检测过程可以被视为马尔可夫决策过程(MDP)。我们提出了一种具有参数化动作空间的强化学习系统用于图像目标检测。该系统利用在场景中探索的主动智能体来识别目标物体的位置,并通过在参数化空间中采取简单动作来学习策略来细化智能体的几何形状,该策略集成了离散动作及其对应的连续参数。然后,我们使用判别多重典型相关分析(discriminative multiple canonical correlation analysis, DMCCA)[11]优化生成的区域建议的表示,为Fast R-CNN分类做准备。在PASCAL VOC 2007和2012数据集上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信