State Estimation for Stochastic Singularly Perturbed Complex Networks Under New Dynamic Event-Triggered Mechanism

Hanbo Ai, Chao Yang, Xiongbo Wan
{"title":"State Estimation for Stochastic Singularly Perturbed Complex Networks Under New Dynamic Event-Triggered Mechanism","authors":"Hanbo Ai, Chao Yang, Xiongbo Wan","doi":"10.1109/YAC57282.2022.10023764","DOIUrl":null,"url":null,"abstract":"This paper studies the estimation issue for stochastic singularly perturbed complex networks (SPCNs) under a dynamic event-triggered mechanism (ETM). The SPCN is with a Markov chain whose transition probabilities are dependent on a stochastic variable that takes values with known sojourn probabilities. A new ETM is proposed to reduce the use of network resources. We design a state estimator which ensures the estimation error dynamics to be stochastically stable with $H_{\\infty}$ performance. By matrix inequality technology, the desired parameters of state estimator are obtained. The effectiveness of the event-triggered estimation method is shown via a numerical example.","PeriodicalId":272227,"journal":{"name":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC57282.2022.10023764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the estimation issue for stochastic singularly perturbed complex networks (SPCNs) under a dynamic event-triggered mechanism (ETM). The SPCN is with a Markov chain whose transition probabilities are dependent on a stochastic variable that takes values with known sojourn probabilities. A new ETM is proposed to reduce the use of network resources. We design a state estimator which ensures the estimation error dynamics to be stochastically stable with $H_{\infty}$ performance. By matrix inequality technology, the desired parameters of state estimator are obtained. The effectiveness of the event-triggered estimation method is shown via a numerical example.
新的动态事件触发机制下随机奇摄动复杂网络的状态估计
研究了动态事件触发机制下随机奇摄动复杂网络的估计问题。SPCN具有一个马尔可夫链,其转移概率依赖于一个随机变量,该随机变量取已知逗留概率的值。为了减少网络资源的使用,提出了一种新的ETM。我们设计了一个状态估计器,保证了估计误差动态是随机稳定的,具有$H_{\infty}$性能。利用矩阵不等式技术,得到了状态估计器的期望参数。通过数值算例验证了事件触发估计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信