Linear Hensel Lifting for Zp[x,y] for n Factors with Cubic Cost

M. Monagan, Garrett Paluck
{"title":"Linear Hensel Lifting for Zp[x,y] for n Factors with Cubic Cost","authors":"M. Monagan, Garrett Paluck","doi":"10.1145/3476446.3536178","DOIUrl":null,"url":null,"abstract":"We present a new algorithm for performing linear Hensel lifting on bivariate polynomials over the finite field Zp for some prime p. Our algorithm lifts n monic, univariate polynomials to recover the factors of a polynomial A(x,y) in Zp[x,y] which is monic in x, and bounded by degrees dx = deg(A,x) and dy = deg(A,y). Our algorithm improves upon Bernardin's algorithm in [1] and reduces the number of arithmetic operations in Zp from O(n dx^2 dy^2) to O(dx^2 dy + dx dy^2) for p >= dx. Experimental results in C verify that our algorithm compares favorably with Bernardin's for large degree polynomials. Moreover, we've implemented a Quadratic Hensel lifting algorithm in Magma to show that our cubic Linear Hensel lifting algorithm outperforms Magma's Quadratic Hensel lifting for a wide range of input sizes.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a new algorithm for performing linear Hensel lifting on bivariate polynomials over the finite field Zp for some prime p. Our algorithm lifts n monic, univariate polynomials to recover the factors of a polynomial A(x,y) in Zp[x,y] which is monic in x, and bounded by degrees dx = deg(A,x) and dy = deg(A,y). Our algorithm improves upon Bernardin's algorithm in [1] and reduces the number of arithmetic operations in Zp from O(n dx^2 dy^2) to O(dx^2 dy + dx dy^2) for p >= dx. Experimental results in C verify that our algorithm compares favorably with Bernardin's for large degree polynomials. Moreover, we've implemented a Quadratic Hensel lifting algorithm in Magma to show that our cubic Linear Hensel lifting algorithm outperforms Magma's Quadratic Hensel lifting for a wide range of input sizes.
Zp[x,y]对n个三次代价因子的线性Hensel提升
我们提出了一种新的算法,用于在有限域Zp上对某些素数p的二元多项式进行线性Hensel提升。我们的算法提升了n个单变量多项式,以恢复Zp[x,y]中多项式a (x,y)的因子,该多项式在x中是单变量的,并且以度dx = deg(a,x)和dy = deg(a,y)为界。我们的算法改进了[1]中的Bernardin算法,并将Zp中的算术运算次数从O(n dx^2 dy^2)减少到O(dx^2 dy + dx dy^2), p >= dx。C语言的实验结果验证了我们的算法在处理大次多项式时优于Bernardin算法。此外,我们在Magma中实现了一个二次Hensel提升算法,表明我们的三次线性Hensel提升算法在大范围的输入大小下优于Magma的二次Hensel提升算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信