The Lie Derivative and Interior Multiplication

L. Tu
{"title":"The Lie Derivative and Interior Multiplication","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.16","DOIUrl":null,"url":null,"abstract":"This chapter reviews two operations on differential forms, the Lie derivative and interior multiplication. These are necessary to the definition of invariant forms, horizontal forms, and basic forms in the construction of the Cartan model. The chapter then looks at the Lie derivative of a vector field and of a differential form. The Lie derivative of a differential form is defined in a similar way to the Lie derivative of a vector field, but the chapter uses the pullback instead of the pushforward to compare nearby values. One can rearrange the product formula so that it becomes the global formula for the Lie derivative. Meanwhile, the interior multiplication is also called the contraction.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter reviews two operations on differential forms, the Lie derivative and interior multiplication. These are necessary to the definition of invariant forms, horizontal forms, and basic forms in the construction of the Cartan model. The chapter then looks at the Lie derivative of a vector field and of a differential form. The Lie derivative of a differential form is defined in a similar way to the Lie derivative of a vector field, but the chapter uses the pullback instead of the pushforward to compare nearby values. One can rearrange the product formula so that it becomes the global formula for the Lie derivative. Meanwhile, the interior multiplication is also called the contraction.
李导数与内乘法
这一章回顾了关于微分形式的两个运算,李导和内乘法。这些对于在Cartan模型的构建中定义不变形式、水平形式和基本形式是必要的。然后,本章讨论向量场和微分形式的李导。微分形式的李氏导数的定义方式与向量场的李氏导数的定义方式类似,但本章使用回拉而不是前推来比较附近的值。我们可以重新排列乘积公式使之成为李氏导数的整体公式。同时,内部乘法也被称为收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信