{"title":"MM-FPN: Multi-path and Multi-scale Feature Pyramid Network for Object Detection","authors":"Sheng Dong, Jiaxin Zhang, Zehui Qu","doi":"10.1109/ISCEIC53685.2021.00072","DOIUrl":null,"url":null,"abstract":"Small and multi-scale objects are always dilemmas for object detection. However, small objects may disappear and cannot be detected because it is arduous to differentiate information from a small part of the original image. To alleviate the issue, an image pyramid is utilized to build a feature pyramid to detect across a range of scales. Instead, we combine image pyramid and feature pyramid with a Contextually Enhanced Module (CEM) to extract contextual information. Furthermore, we propose Unidirectional Bottom-up Connections (UBC) to extract more distinct features. A novel Multi-path and Multi-scale Feature Pyramid Network (MM-FPN) is proposed to improve the performance of both small-sized and large-sized objects. Experiments and ablation studies are performed on PASCAL VOC, which surpass most of the existing competitive single-stage and two-stage methods.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Small and multi-scale objects are always dilemmas for object detection. However, small objects may disappear and cannot be detected because it is arduous to differentiate information from a small part of the original image. To alleviate the issue, an image pyramid is utilized to build a feature pyramid to detect across a range of scales. Instead, we combine image pyramid and feature pyramid with a Contextually Enhanced Module (CEM) to extract contextual information. Furthermore, we propose Unidirectional Bottom-up Connections (UBC) to extract more distinct features. A novel Multi-path and Multi-scale Feature Pyramid Network (MM-FPN) is proposed to improve the performance of both small-sized and large-sized objects. Experiments and ablation studies are performed on PASCAL VOC, which surpass most of the existing competitive single-stage and two-stage methods.