Classification of Privacy-preserving Distributed Data Mining protocols

Zhuojia Xu, X. Yi
{"title":"Classification of Privacy-preserving Distributed Data Mining protocols","authors":"Zhuojia Xu, X. Yi","doi":"10.1109/ICDIM.2011.6093356","DOIUrl":null,"url":null,"abstract":"Recently, a new research area, named Privacy-preserving Distributed Data Mining (PPDDM) has emerged. It aims at solving the following problem: a number of participants want to jointly conduct a data mining task based on the private data sets held by each of the participants. This problem setting has captured attention and interests of researchers, practitioners and developers from the communities of both data mining and information security. They have made great progress in designing and developing solutions to address this scenario. However, researchers and practitioners are now faced with a challenge on how to devise a standard on synthesizing and evaluating various PPDDM protocols, because they have been confused by the excessive number of techniques developed so far. In this paper, we put forward a framework to synthesize and characterize existing PPDDM protocols so as to provide a standard and systematic approach of understanding PPDDM-related problems, analyzing PPDDM requirements and designing effective and efficient PPDDM protocols.","PeriodicalId":355775,"journal":{"name":"2011 Sixth International Conference on Digital Information Management","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2011.6093356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Recently, a new research area, named Privacy-preserving Distributed Data Mining (PPDDM) has emerged. It aims at solving the following problem: a number of participants want to jointly conduct a data mining task based on the private data sets held by each of the participants. This problem setting has captured attention and interests of researchers, practitioners and developers from the communities of both data mining and information security. They have made great progress in designing and developing solutions to address this scenario. However, researchers and practitioners are now faced with a challenge on how to devise a standard on synthesizing and evaluating various PPDDM protocols, because they have been confused by the excessive number of techniques developed so far. In this paper, we put forward a framework to synthesize and characterize existing PPDDM protocols so as to provide a standard and systematic approach of understanding PPDDM-related problems, analyzing PPDDM requirements and designing effective and efficient PPDDM protocols.
保护隐私的分布式数据挖掘协议分类
最近出现了一个新的研究领域,即保护隐私的分布式数据挖掘(PPDDM)。它旨在解决以下问题:多个参与者希望基于每个参与者持有的私有数据集共同进行数据挖掘任务。这个问题集引起了数据挖掘和信息安全社区的研究人员、实践者和开发人员的注意和兴趣。他们在设计和开发解决方案以应对这种情况方面取得了很大进展。然而,由于目前开发的技术数量过多,研究人员和实践者面临着如何制定一个综合和评估各种PPDDM协议的标准的挑战。本文提出了一个框架来综合和表征现有PPDDM协议,从而为理解PPDDM相关问题、分析PPDDM需求和设计高效的PPDDM协议提供一个标准和系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信