An Approach to Regression Test Selection Based on Hierarchical Slicing Technique

Chuanqi Tao, Bixin Li, Xiaobing Sun, Chongfeng Zhang
{"title":"An Approach to Regression Test Selection Based on Hierarchical Slicing Technique","authors":"Chuanqi Tao, Bixin Li, Xiaobing Sun, Chongfeng Zhang","doi":"10.1109/COMPSACW.2010.67","DOIUrl":null,"url":null,"abstract":"Regression testing is an important stage of software maintenance. Regression test selection is a key technique to test case reuse. Program slicing is one of these commonly used regression test selection techniques. The proposed slicing techniques for regression test selection are primarily for procedural program. Hierarchy slice, which is used for object-oriented programs according to the logical hierarchy of program, is able to compute slice step by step based on hierarchical slicing criterion. Compared to traditional slicing, hierarchical slicing technique can produce more precise slice especially for object-oriented program. This paper applies hierarchical slicing technique to regression test selection in order to improve the precision of regression test selection and address the problem of level. The approach computes hierarchy slice on the modified parts of program, then selects test cases from different levels in terms of test case coverage. This approach can select test cases from high level to low level of program. The initial experimental results present the effectiveness of applying hierarchical slicing in regression test selection.","PeriodicalId":121135,"journal":{"name":"2010 IEEE 34th Annual Computer Software and Applications Conference Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 34th Annual Computer Software and Applications Conference Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSACW.2010.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Regression testing is an important stage of software maintenance. Regression test selection is a key technique to test case reuse. Program slicing is one of these commonly used regression test selection techniques. The proposed slicing techniques for regression test selection are primarily for procedural program. Hierarchy slice, which is used for object-oriented programs according to the logical hierarchy of program, is able to compute slice step by step based on hierarchical slicing criterion. Compared to traditional slicing, hierarchical slicing technique can produce more precise slice especially for object-oriented program. This paper applies hierarchical slicing technique to regression test selection in order to improve the precision of regression test selection and address the problem of level. The approach computes hierarchy slice on the modified parts of program, then selects test cases from different levels in terms of test case coverage. This approach can select test cases from high level to low level of program. The initial experimental results present the effectiveness of applying hierarchical slicing in regression test selection.
基于分层切片技术的回归测试选择方法
回归测试是软件维护的一个重要阶段。回归测试选择是测试用例复用的关键技术。程序切片是这些常用的回归测试选择技术之一。所提出的回归测试选择切片技术主要针对程序程序。层次切片是一种面向对象的切片方法,它根据程序的逻辑层次结构,根据分层切片准则逐级计算切片。与传统的切片技术相比,分层切片技术可以产生更精确的切片,特别是对于面向对象的程序。本文将分层切片技术应用于回归检验选择,以提高回归检验选择的精度,解决回归检验的层次问题。该方法在程序修改部分上计算层次切片,然后根据测试用例覆盖率从不同层次选择测试用例。这种方法可以从程序的高层到低层选择测试用例。初步的实验结果证明了分层切片在回归测试选择中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信