Energy-based architecture for classification of publication figures

P. Barbano, M. Nagy, M. Krauthammer
{"title":"Energy-based architecture for classification of publication figures","authors":"P. Barbano, M. Nagy, M. Krauthammer","doi":"10.1109/BSEC.2013.6618492","DOIUrl":null,"url":null,"abstract":"We present an implementation of the experimental and theoretical results obtained in the analysis of text and image content of biomedical publications. Particularly, we propose a novel optical recognition system using an adaptive algorithm for the classification and analysis of highly heterogeneous images in research papers. When compared with conventional algorithms, our technology substantially increases the probability of detection and classification of images buried in text or obscured by other images. We report successful testing of the new architecture using PubMed publications.","PeriodicalId":431045,"journal":{"name":"2013 Biomedical Sciences and Engineering Conference (BSEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Biomedical Sciences and Engineering Conference (BSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSEC.2013.6618492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present an implementation of the experimental and theoretical results obtained in the analysis of text and image content of biomedical publications. Particularly, we propose a novel optical recognition system using an adaptive algorithm for the classification and analysis of highly heterogeneous images in research papers. When compared with conventional algorithms, our technology substantially increases the probability of detection and classification of images buried in text or obscured by other images. We report successful testing of the new architecture using PubMed publications.
出版物数字分类的基于能量的体系结构
我们提出了在生物医学出版物的文本和图像内容分析中获得的实验和理论结果的实现。特别地,我们在研究论文中提出了一种使用自适应算法对高度异构图像进行分类和分析的新型光学识别系统。与传统算法相比,我们的技术大大提高了对隐藏在文本中或被其他图像遮挡的图像的检测和分类的概率。我们报告使用PubMed出版物对新架构进行了成功的测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信