Otimização da Localização de Estações Radiobase Baseada em Sistemas Imunológicos Artificiais

Djalma Carvalho Filho, M. Alencar
{"title":"Otimização da Localização de Estações Radiobase Baseada em Sistemas Imunológicos Artificiais","authors":"Djalma Carvalho Filho, M. Alencar","doi":"10.14209/sbrt.2008.42834","DOIUrl":null,"url":null,"abstract":"—This article describes base station placement as a multi-objective problem (MOP). Base station placement and con-figuration envolves a large number of unknowns and constraints and heuristic algorithms seem to be a suitable alternative to solve MOPs. A new class of evolutionary algorithms, the so-called multi-objective optimisation algorithms based on artificial immune systems (MO-AIS) are the core of an innovative approach to base station placement, which is presented in this paper. Preliminary results followed by a thorough analysis are provided. Three network simulation environments are used in the tests.","PeriodicalId":340055,"journal":{"name":"Anais do XXVI Simpósio Brasileiro de Telecomunicações","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXVI Simpósio Brasileiro de Telecomunicações","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14209/sbrt.2008.42834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

—This article describes base station placement as a multi-objective problem (MOP). Base station placement and con-figuration envolves a large number of unknowns and constraints and heuristic algorithms seem to be a suitable alternative to solve MOPs. A new class of evolutionary algorithms, the so-called multi-objective optimisation algorithms based on artificial immune systems (MO-AIS) are the core of an innovative approach to base station placement, which is presented in this paper. Preliminary results followed by a thorough analysis are provided. Three network simulation environments are used in the tests.
基于人工免疫系统优化基站位置
本文将基站的放置描述为一个多目标问题(MOP)。基站的放置和配置涉及大量的未知和约束,启发式算法似乎是解决MOPs的合适选择。本文提出了一类新的进化算法,即所谓的基于人工免疫系统(MO-AIS)的多目标优化算法,这是一种创新基站放置方法的核心。提供了初步结果,然后进行了彻底的分析。测试中使用了三种网络仿真环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信