{"title":"Computing Origami Universal Molecules with Cyclic Tournament Forests","authors":"J. Bowers, I. Streinu","doi":"10.1109/SYNASC.2013.13","DOIUrl":null,"url":null,"abstract":"Lang's \"universal molecule\" algorithm solves a variant of the origami design problem. It takes as input a metric tree and a convex polygonal region (the \"paper\") having a certain metric relationship with the tree. It computes a crease- pattern which allows for the paper to \"fold\" to a uniaxial base, which is a 3-dimensional shape projecting onto the given tree. Lang's universal molecule algorithm runs in cubic time and quadratic space. We investigate two implementations which improve the running time to sub-cubic time. The first uses a cyclic tournament forest, a new data structure which extends kinetic tournament trees to allow for cycle splitting operations, and the second uses a priority queue to store events.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Lang's "universal molecule" algorithm solves a variant of the origami design problem. It takes as input a metric tree and a convex polygonal region (the "paper") having a certain metric relationship with the tree. It computes a crease- pattern which allows for the paper to "fold" to a uniaxial base, which is a 3-dimensional shape projecting onto the given tree. Lang's universal molecule algorithm runs in cubic time and quadratic space. We investigate two implementations which improve the running time to sub-cubic time. The first uses a cyclic tournament forest, a new data structure which extends kinetic tournament trees to allow for cycle splitting operations, and the second uses a priority queue to store events.