Computing Origami Universal Molecules with Cyclic Tournament Forests

J. Bowers, I. Streinu
{"title":"Computing Origami Universal Molecules with Cyclic Tournament Forests","authors":"J. Bowers, I. Streinu","doi":"10.1109/SYNASC.2013.13","DOIUrl":null,"url":null,"abstract":"Lang's \"universal molecule\" algorithm solves a variant of the origami design problem. It takes as input a metric tree and a convex polygonal region (the \"paper\") having a certain metric relationship with the tree. It computes a crease- pattern which allows for the paper to \"fold\" to a uniaxial base, which is a 3-dimensional shape projecting onto the given tree. Lang's universal molecule algorithm runs in cubic time and quadratic space. We investigate two implementations which improve the running time to sub-cubic time. The first uses a cyclic tournament forest, a new data structure which extends kinetic tournament trees to allow for cycle splitting operations, and the second uses a priority queue to store events.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Lang's "universal molecule" algorithm solves a variant of the origami design problem. It takes as input a metric tree and a convex polygonal region (the "paper") having a certain metric relationship with the tree. It computes a crease- pattern which allows for the paper to "fold" to a uniaxial base, which is a 3-dimensional shape projecting onto the given tree. Lang's universal molecule algorithm runs in cubic time and quadratic space. We investigate two implementations which improve the running time to sub-cubic time. The first uses a cyclic tournament forest, a new data structure which extends kinetic tournament trees to allow for cycle splitting operations, and the second uses a priority queue to store events.
用循环锦标赛森林计算折纸通用分子
朗的 "通用分子 "算法解决了折纸设计问题的一个变种。它的输入是一棵度量树和一个与树有一定度量关系的凸多边形区域("纸")。它计算出一种折痕模式,使纸张 "折叠 "成单轴基,即投影到给定树上的三维形状。兰的通用分子算法以三次方时间和二次方空间运行。我们研究了两种实现方法,它们将运行时间提高到了亚立方时间。第一种使用循环锦标赛森林,这是一种新的数据结构,它扩展了动力学锦标赛树,允许进行循环拆分操作;第二种使用优先队列来存储事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信