From Task-Based GPU Work Aggregation to Stellar Mergers: Turning Fine-Grained CPU Tasks into Portable GPU Kernels

Gregor Daiß, Patrick Diehl, Dominic C. Marcello, Alireza Kheirkhahan, H. Kaiser, D. Pflüger
{"title":"From Task-Based GPU Work Aggregation to Stellar Mergers: Turning Fine-Grained CPU Tasks into Portable GPU Kernels","authors":"Gregor Daiß, Patrick Diehl, Dominic C. Marcello, Alireza Kheirkhahan, H. Kaiser, D. Pflüger","doi":"10.1109/P3HPC56579.2022.00014","DOIUrl":null,"url":null,"abstract":"Meeting both scalability and performance portability requirements is a challenge for any HPC application, especially for adaptively refined ones. In Octo-Tiger, an astrophysics application for the simulation of stellar mergers, we approach this with existing solutions: We employ HPX to obtain fine-grained tasks to easily distribute work and finely overlap communication and computation. For the computations themselves, we use Kokkos to turn these tasks into compute kernels capable of running on hardware ranging from a few CPU cores to powerful accelerators. There is a missing link, however: while the fine-grained parallelism exposed by HPX is useful for scalability, it can hinder GPU performance when the tasks become too small to saturate the device, causing low resource utilization. To bridge this gap, we investigate multiple different GPU work aggregation strategies within Octo-Tiger, adding one new strategy, and evaluate the node-level performance impact on recent AMD and NVIDIA GPUs, achieving noticeable speedups.","PeriodicalId":261766,"journal":{"name":"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/P3HPC56579.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Meeting both scalability and performance portability requirements is a challenge for any HPC application, especially for adaptively refined ones. In Octo-Tiger, an astrophysics application for the simulation of stellar mergers, we approach this with existing solutions: We employ HPX to obtain fine-grained tasks to easily distribute work and finely overlap communication and computation. For the computations themselves, we use Kokkos to turn these tasks into compute kernels capable of running on hardware ranging from a few CPU cores to powerful accelerators. There is a missing link, however: while the fine-grained parallelism exposed by HPX is useful for scalability, it can hinder GPU performance when the tasks become too small to saturate the device, causing low resource utilization. To bridge this gap, we investigate multiple different GPU work aggregation strategies within Octo-Tiger, adding one new strategy, and evaluate the node-level performance impact on recent AMD and NVIDIA GPUs, achieving noticeable speedups.
从基于任务的GPU工作聚合到恒星合并:将细粒度CPU任务转化为可移植的GPU内核
满足可伸缩性和性能可移植性要求对任何HPC应用程序来说都是一个挑战,特别是对于自适应改进的应用程序。在模拟恒星合并的天体物理应用Octo-Tiger中,我们使用现有的解决方案来解决这个问题:我们使用HPX来获得细粒度的任务,以便轻松地分配工作,并精细地重叠通信和计算。对于计算本身,我们使用Kokkos将这些任务转换为能够在从几个CPU内核到强大加速器的硬件上运行的计算内核。然而,这里有一个缺失的环节:虽然HPX暴露的细粒度并行性对可伸缩性很有用,但当任务变得太小而无法使设备饱和时,它可能会阻碍GPU性能,导致资源利用率低。为了弥补这一差距,我们在Octo-Tiger中研究了多种不同的GPU工作聚合策略,添加了一种新策略,并评估了节点级性能对最近AMD和NVIDIA GPU的影响,实现了显著的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信