The facial expression recognition based on KPCA

Yanmei Wang, Yanzhu Zhang
{"title":"The facial expression recognition based on KPCA","authors":"Yanmei Wang, Yanzhu Zhang","doi":"10.1109/ICICIP.2010.5565300","DOIUrl":null,"url":null,"abstract":"Kernel Principal Component Analysis (KPCA) extracting principal component with nonlinear method is an improved PCA. The KPCA has been got widely used in feature extraction and face recognition. The KPCA can extract the feature set which is more suitable in categorization than the conventional PCA. This paper tried to apply the KPCA to feature extraction of facial expression recognition. The experimental results demonstrate that the KPCA is not only good at dimensional reduction, but also available to get better performance than conventional PCA. The highest rate is 97.96%.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5565300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Kernel Principal Component Analysis (KPCA) extracting principal component with nonlinear method is an improved PCA. The KPCA has been got widely used in feature extraction and face recognition. The KPCA can extract the feature set which is more suitable in categorization than the conventional PCA. This paper tried to apply the KPCA to feature extraction of facial expression recognition. The experimental results demonstrate that the KPCA is not only good at dimensional reduction, but also available to get better performance than conventional PCA. The highest rate is 97.96%.
基于KPCA的面部表情识别
核主成分分析(KPCA)是一种改进的主成分分析方法。KPCA在特征提取和人脸识别中得到了广泛的应用。KPCA可以提取出比传统PCA更适合分类的特征集。本文尝试将KPCA应用于人脸表情识别的特征提取。实验结果表明,KPCA不仅具有较好的降维效果,而且可以获得比传统PCA更好的性能。最高为97.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信